ArticleOriginal scientific text

Title

The upper domination Ramsey number u(4,4)

Authors 1, 2

Affiliations

  1. Department of Computer Science, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
  2. Department of Discrete Mathematics, Gdańsk University of Technology, G. Narutowicza 11/12, 80-952 Gdańsk, Poland

Abstract

The upper domination Ramsey number u(m,n) is the smallest integer p such that every 2-coloring of the edges of Kₚ with color red and blue, Γ(B) ≥ m or Γ(R) ≥ n, where B and R is the subgraph of Kₚ induced by blue and red edges, respectively; Γ(G) is the maximum cardinality of a minimal dominating set of a graph G. In this paper, we show that u(4,4) ≤ 15.

Keywords

edge coloring, upper domination Ramsey number

Bibliography

  1. R.C. Brewster, E.J. Cockayne and C.M. Mynhardt, Irredundant Ramsey numbers for graphs, J. Graph Theory 13 (1989) 283-290, doi: 10.1002/jgt.3190130303.
  2. E.J. Cockayne, G. Exoo, J.H. Hattingh and C.M. Mynhardt, The Irredundant Ramsey Number s(4,4), Util. Math. 41 (1992) 119-128.
  3. E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247-261, doi: 10.1002/net.3230070305.
  4. R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canadian J. Math. 7 (1955) 1-7, doi: 10.4153/CJM-1955-001-4.
  5. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, (1998) (Proposition 3.8, p. 72).
  6. M.A. Henning and O.R. Oellermann, The upper domination Ramsey number u(3,3,3), Discrete Math. 242 (2002) 103-113, doi: 10.1016/S0012-365X(00)00369-1.
  7. M.A. Henning and O.R. Oellermann, On upper domination Ramsey numbers for graphs, Discrete Math. 274 (2004) 125-135, doi: 10.1016/S0012-365X(03)00084-0.
Pages:
419-430
Main language of publication
English
Received
2005-10-11
Accepted
2006-07-04
Published
2006
Exact and natural sciences