PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 26 | 3 | 413-418
Tytuł artykułu

A note on joins of additive hereditary graph properties

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let $L^a$ denote a set of additive hereditary graph properties. It is a known fact that a partially ordered set $(L^a, ⊆ )$ is a complete distributive lattice. We present results when a join of two additive hereditary graph properties in $(L^a, ⊆ )$ has a finite or infinite family of minimal forbidden subgraphs.
Wydawca
Rocznik
Tom
26
Numer
3
Strony
413-418
Opis fizyczny
Daty
wydano
2006
otrzymano
2006-02-14
poprawiono
2006-09-25
Twórcy
  • Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] A.J. Berger, Minimal forbidden subgraphs of reducible graph properties, Discuss. Math. Graph Theory 21 (2001) 111-117, doi: 10.7151/dmgt.1136.
  • [2] A.J. Berger, I. Broere, S.J.T. Moagi and P. Mihók, Meet- and join-irreducibility of additive hereditary properties of graphs, Discrete Math. 251 (2002) 11-18, doi: 10.1016/S0012-365X(01)00323-5.
  • [3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishawa International Publication, Gulbarga, 1991) 41-68.
  • [4] I. Broere, M. Frick and G.Semanišin, Maximal graphs with respect to hereditary properties, Discuss. Math. Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038.
  • [5] D.L. Greenwell, R.L. Hemminger and J. Klerlein, Forbidden subgraphs, Proceedings of the 4th S-E Conf. Combinatorics, Graph Theory and Computing (Utilitas Math., Winnipeg, Man., 1973) 389-394.
  • [6] J. Jakubik, On the Lattice of Additive Hereditary Properties of Finite Graphs, Discuss. Math. General Algebra and Applications 22 (2002) 73-86.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1333
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.