PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Discussiones Mathematicae Graph Theory

2006 | 26 | 3 | 359-368
Tytuł artykułu

### Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let G be a finite group, and let $1_G ∉ S ⊆ G$. A Cayley di-graph Γ = Cay(G,S) of G relative to S is a di-graph with a vertex set G such that, for x,y ∈ G, the pair (x,y) is an arc if and only if $yx^{-1} ∈ S$. Further, if $S = S^{-1}:= {s^{-1}|s ∈ S}$, then Γ is undirected. Γ is conected if and only if G = ⟨s⟩. A Cayley (di)graph Γ = Cay(G,S) is called normal if the right regular representation of G is a normal subgroup of the automorphism group of Γ. A graph Γ is said to be arc-transitive, if Aut(Γ) is transitive on an arc set. Also, a graph Γ is s-regular if Aut(Γ) acts regularly on the set of s-arcs. In this paper, we first give a complete classification for arc-transitive Cayley graphs of valency five on finite Abelian groups. Moreover, we classify s-regular Cayley graph with valency five on an abelian group for each s ≥ 1.
Słowa kluczowe
EN
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
359-368
Opis fizyczny
Daty
wydano
2006
otrzymano
2005-11-29
poprawiono
2006-06-05
Twórcy
autor
• Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran
Bibliografia
• [1] B. Alspach, M. Conder, D. Marusic and Ming-Yao Xu, A classification of 2-arc-transitive circulant, J. Algebraic Combin. 5 (1996) 83-86, doi: 10.1023/A:1022456615990.
• [2] N. Biggs, Algebraic Graph Theory (Cambridge University Press, 1974).
• [3] Y.G. Baik, Y.Q. Feng and H.S. Sim, The normality of Cayley graphs of finite Abelian groups with valency 5, System Science and Mathematical Science 13 (2000) 420-431.
• [4] J.L. Berggren, An algebraic characterization of symmetric graph with p point, Bull. Aus. Math. Soc. 158 (1971) 247-256.
• [5] C.Y. Chao, On the classification of symmetric graph with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971) 247-256, doi: 10.1090/S0002-9947-1971-0279000-7.
• [6] C.Y. Chao and J. G. Wells, A class of vertex-transitive digraphs, J. Combin. Theory (B) 14 (1973) 246-255, doi: 10.1016/0095-8956(73)90007-5.
• [7] J.D. Dixon and B. Mortimer, Permutation Groups (Springer-Verlag, 1996).
• [8] C.D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256, doi: 10.1007/BF02579330.
• [9] C.D. Godsil and G. Royle, Algebric Graph Theory (Springer-Verlag, 2001).
• [10] H. Wielandt, Finite Permutation Group (Academic Press, New York, 1964).
• [11] Ming-Yao Xu and Jing Xu, Arc-transitive Cayley graph of valency at most four on Abelian Groups, Southest Asian Bull. Math. 25 (2001) 355-363, doi: 10.1007/s10012-001-0355-z.
• [12] Ming-Yao Xu, A note on one-regular graphs of valency four, Chinese Science Bull. 45 (2000) 2160-2162.
• [13] Ming-Yao Xu, Hyo-Seob Sim and Youg-Gheel Baik, Arc-transitive circulant digraphs of odd prime-power order, (summitted).
• [14] Ming-Yao Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998) 309-319, doi: 10.1016/S0012-365X(97)00152-0.
Typ dokumentu
Bibliografia
Identyfikatory