PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Discussiones Mathematicae Graph Theory

2006 | 26 | 2 | 249-272
Tytuł artykułu

### On stratification and domination in graphs

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A graph G is 2-stratified if its vertex set is partitioned into two classes (each of which is a stratum or a color class), where the vertices in one class are colored red and those in the other class are colored blue. Let F be a 2-stratified graph rooted at some blue vertex v. An F-coloring of a graph is a red-blue coloring of the vertices of G in which every blue vertex v belongs to a copy of F rooted at v. The F-domination number $γ_F(G)$ is the minimum number of red vertices in an F-coloring of G. In this paper, we study F-domination, where F is a 2-stratified red-blue-blue path of order 3 rooted at a blue end-vertex. We present characterizations of connected graphs of order n with F-domination number n or 1 and establish several realization results on F-domination number and other domination parameters.
Słowa kluczowe
EN
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
249-272
Opis fizyczny
Daty
wydano
2006
otrzymano
2005-08-31
poprawiono
2006-03-31
Twórcy
autor
• Department of Applied Mathematics, Naval Postgradute School, Monterey, CA 93943-5216, USA
autor
• Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, USA
Bibliografia
• [1] B. Bollobas and E.J. Cockayne, The irredundance number and maximum degree of a graph, Discrete. Math. 49 (1984) 197-199, doi: 10.1016/0012-365X(84)90118-3.
• [2] G. Chartrand, H. Gavlas, M.A. Henning and R. Rashidi, Stratidistance in stratified graphs, Math. Bohem. 122 (1997) 337-347.
• [3] G. Chartrand, T.W. Haynes, M.A. Henning and P. Zhang, Stratification and domination in graphs, Discrete Math. 272 (2003) 171-185, doi: 10.1016/S0012-365X(03)00078-5.
• [4] G. Chartrand, T.W. Haynes, M.A. Henning and P. Zhang, Stratified claw domination in prisms, J. Combin. Math. Combin. Comput. 33 (2000) 81-96.
• [5] G. Chartrand, L. Holley, R. Rashidi and N.A. Sherwani, Distance in stratified graphs, Czech. Math. J. 125 (2000) 135-146.
• [6] G. Chartrand and P. Zhang, Introduction to Graph Theory (McGraw-Hill, Boston, 2005).
• [7] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.
• [8] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Markus, Restrained domination, preprint.
• [9] J.F. Fink and M.S. Jacobson, n-Domination in graphs, in: Y. Alavi and A.J. Schwenk, eds, Graph Theory with Applications to Algorithms and Computer Science, 283-300 (Kalamazoo, MI 1984), Wiley, New York, 1985.
• [10] R. Rashidi, The Theory and Applications of Stratified Graphs (Ph.D. Dissertation, Western Michigan University, 1994).
Typ dokumentu
Bibliografia
Identyfikatory