Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
A k-uniform hypergraph H = (V;E) is called self-complementary if there is a permutation σ:V → V, called self-complementing, such that for every k-subset e of V, e ∈ E if and only if σ(e) ∉ E. In other words, H is isomorphic with $H' = (V; \binom{V}{k} - E)$.
In the present paper, for every k, (1 ≤ k ≤ n), we give a characterization of self-complementig permutations of k-uniform self-complementary hypergraphs of the order n. This characterization implies the well known results for self-complementing permutations of graphs, given independently in the years 1962-1963 by Sachs and Ringel, and those obtained for 3-uniform hypergraphs by Kocay, for 4-uniform hypergraphs by Szymański, and for general (not uniform) hypergraphs by Zwonek.
In the present paper, for every k, (1 ≤ k ≤ n), we give a characterization of self-complementig permutations of k-uniform self-complementary hypergraphs of the order n. This characterization implies the well known results for self-complementing permutations of graphs, given independently in the years 1962-1963 by Sachs and Ringel, and those obtained for 3-uniform hypergraphs by Kocay, for 4-uniform hypergraphs by Szymański, and for general (not uniform) hypergraphs by Zwonek.
Słowa kluczowe
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
217-224
Opis fizyczny
Daty
wydano
2006
otrzymano
2005-07-18
poprawiono
2006-02-04
Twórcy
autor
- AGH University of Science and Technology, Faculty of Applied Mathematics, Department of Discrete Mathematics, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] A. Benhocine and A.P. Wojda, On self-complementation, J. Graph Theory 8 (1985) 335-341, doi: 10.1002/jgt.3190090305.
- [2] W. Kocay, Reconstructing graphs as subsumed graphs of hypergraphs, and some self-complementary triple systems, Graphs and Combinatorics 8 (1992) 259-276, doi: 10.1007/BF02349963.
- [3] G. Ringel, Selbstkomplementäre Graphen, Arch. Math. 14 (1963) 354-358, doi: 10.1007/BF01234967.
- [4] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270-288.
- [5] A. Szymański, A note on self-complementary 4-uniform hypergraphs, Opuscula Mathematica 25/2 (2005) 319-323.
- [6] M. Zwonek, A note on self-complementary hypergraphs, Opuscula Mathematica 25/2 (2005) 351-354.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1314