ArticleOriginal scientific text

Title

A lower bound for the irredundance number of trees

Authors 1, 1

Affiliations

  1. Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Abstract

Let ir(G) and γ(G) be the irredundance number and domination number of a graph G, respectively. The number of vertices and leaves of a graph G are denoted by n(G) and n₁(G). If T is a tree, then Lemańska [4] presented in 2004 the sharp lower bound γ(T) ≥ (n(T) + 2 - n₁(T))/3. In this paper we prove ir(T) ≥ (n(T) + 2 - n₁(T))/3. for an arbitrary tree T. Since γ(T) ≥ ir(T) is always valid, this inequality is an extension and improvement of Lemańska's result.

Keywords

irredundance, tree, domination

Bibliography

  1. E.J. Cockayne, Irredundance, secure domination, and maximum degree in trees, unpublished manuscript (2004).
  2. E.J. Cockayne, P.H.P. Grobler, S.T. Hedetniemi and A.A. McRae, What makes an irredundant set maximal? J. Combin. Math. Combin. Comput. 25 (1997) 213-224.
  3. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
  4. M. Lemańska, Lower bound on the domination number of a tree, Discuss. Math. Graph Theory 24 (2004) 165-169, doi: 10.7151/dmgt.1222.
Pages:
209-215
Main language of publication
English
Received
2005-05-20
Accepted
2006-02-23
Published
2006
Exact and natural sciences