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Abstract

The Wiener index, W , is the sum of distances between all pairs of
vertices in a graph G. The quadratic line graph is defined as L(L(G)),
where L(G) is the line graph of G. A generalized star S is a tree
consisting of ∆ ≥ 3 paths with the unique common endvertex. A
relation between the Wiener index of S and of its quadratic graph
is presented. It is shown that generalized stars having the property
W (S) = W (L(L(S)) exist only for 4 ≤ ∆ ≤ 6. Infinite families of
generalized stars with this property are constructed.
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1. Introduction

In this paper we are concerned with finite undirected connected graphs with-
out loops and multiple edges. The vertex and edge sets of G are V (G) and
E(G), respectively, n = |V (G)| and q = |E(G)|. The maximal vertex degree
of a graph is denoted by ∆. If u and v are vertices of G, then the number of
edges in the shortest path connecting them is said to be their distance and
is denoted by d(u, v). Terms not defined here can be found in [26].

∗The work was financially supported by the Russian Foundation for Basic Research
(project codes 05-01-00816 and 05-01-00395).
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The sum W (G) of distances between all pairs of vertices of the graph G is
the Wiener index of G [33]:

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

The same quantity is known also as the distance of a graph or graph trans-
mission [17, 29]. This graph invariant belongs to the molecular structure-
descriptors, called topological indices, that are successfully used for the
design of molecules with desired properties, including pharmacologic and
biological activity. Mathematical properties and chemical applications of
the Wiener index have been intensively studied in the last thirty years (see
books [6, 22, 32] and selected reviews [1, 5, 7, 9, 10, 17, 18, 23, 28, 29, 31]).

The line graph L(G) of a graph G has vertices corresponding to the edges
of G and two vertices are adjacent in L(G) if their corresponding edges of G
have a common endvertex. A graph L(L(G)) = L2(G) is called the quadratic
line graph of G. The concept of line graph has found various applications
in chemical research. Parameters of line graphs have been applied for the
evaluation of structural complexity of molecular graphs and for design of
novel topological indices [2, 3, 24, 25].

Buckley has shown that Wiener indices of an arbitrary n-vertex tree T
and its line graph are always distinct [4]. Namely,

W (L(T )) = W (T )−
(

n

2

)
.

The following question naturally arises: does there exist a tree T with the
property

(1) W (L2(T )) = W (T ) ?

A positive answer to this question has been reported in [8]. The number of
such trees up to 26 vertices is presented in [13]. Several infinite families of
trees with property (1) has been constructed in [13, 14, 15]. By construction,
these trees have only one long growing path and two or four branching
vertices. The following problem was posed in [13]: construct an infinite
family of trees satisfying equality (1) such that they have several paths
growing from its centers. A vertex v is said to be a branching vertex if
deg(v) ≥ 3. It is interesting to determine the minimal number of branching
vertices in trees having property (1).
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A generalized star S is a tree consisting of several paths, called branches,
with the unique common endvertex. The number of branches is equal to the
maximal vertex degree ∆ of a generalized star. An example of such a star
with branches of length 2, 3, 3, 3, 7 is shown in Figure 1. In this paper, a
simple relation between W (S) and W (L2(S)) is established. Based on this
relation, we show that stars with ∆ branches and property (1) exist only
for 4 ≤ ∆ ≤ 6. Infinite families of such generalized stars for ∆ = 5, 6 are
constructed.

t t t t t t t t t t t
t
t

t
t

t

t
t

t

Figure 1. A generalized star with ∆ = 5.

2. Relation Between Wiener Indices of a Generalized Star
and Its Quadratic Line Graph

The distance of a vertex v, dG(v), is the sum of distances between v and all
other vertices of G, that is, dG(v) =

∑
u∈V (G) dG(v, u). Then the Wiener

index can be rewritten as

W (G) =
1
2

∑

v∈V (G)

dG(v).

It is a well-known fact that the path P and the star S with n vertices have
the extremal values of the Wiener index among all n-vertex trees [17]. Their
Wiener indices are equal to

W (S) = (n− 1)2 = ∆2 and W (P ) = n (n2 − 1)/6 =
(

n + 1
3

)
.

The distance of endvertex of the n-vertex path P is equal to dP (v) =
n(n− 1)/2 =

(
n
2

)
.

Since W (P ) − W (L2(P )) = W (S) 6= 0 for n ≥ 2, we assume that a
generalized star has ∆ ≥ 3 branches of length k1, k2, . . . , k∆ ≥ 1.
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Proposition 1. Let S be a generalized star with q edges and ∆ branches of
length k1, k2, . . . , k∆. Then

(2) W (S) = q
∆∑

i=1

(
ki + 1

2

)
− 2

∆∑

i=1

(
ki + 1

3

)
.

Proof. The Wiener index of a tree can be calculated through its maximal
path-subtrees (called segments) in which all internal vertices have degree 2
in the tree. If all internal vertices and all edges of a segment B of length k
are deleted from a n-vertex tree T , we have two connected components with
n1(T \B) and n2(T \B) vertices, n1(T \B) + n2(T \B) = n− k + 1. Then

W (T ) =
∑

i

n1(T \Bi) n2(T \Bi) ki +
1
6

∑

i

ki(ki − 1)(3n− 2ki + 1),

where the summations go over all segments of T [9].
Every branch B of length k of a generalized star S with q edges forms

a segment and n1(S \B) n2(S \B) = 1 · (q + 1− k). Then

W (S) =
∆∑

i=1

(q − ki + 1)ki +
1
6

∆∑

i=1

ki(ki − 1)(3q − 2ki + 4)

=
1
6

∆∑

i=1

ki(ki + 1)(3q − 2ki + 2) = q
∆∑

i=1

(
ki + 1

2

)
− 2

∆∑

i=1

(
ki + 1

3

)
.

Other way to prove Proposition 1 consists in application of recurrent formu-
las for the Wiener index from [5, 30].

Further, by the star we mean the generalized star.
Now we describe the structure of L2(S) for a star S with ∆ ≥ 3 branches
of arbitrary lengths. The graph L2(S) consists of the core G0 and ∆ paths
P j , j = 1, 2, . . . , ∆, attached to G0. The core is the quadratic line graph of
the star with ∆ branches of length 1, that is, the core contains ∆ complete
graphs K∆−1 and every core’s vertex belongs exactly to two K∆−1. The
order of the core is equal to ∆(∆ − 1)/2. A terminal vertex of a path P j

connects with all vertices of one complete graph K∆−1 in the core.

Theorem 1. Let S be a star with q edges and ∆ branches of length
k1, k2, . . . , k∆. Then

(3) W (L2(S)) = W (S) +
1
2

(
∆− 1

2

) [
∆∑

i=1

k2
i + q

]
− q2 + 6

(
∆
4

)
.
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Proof. Denote by V0 the vertex set of the core G0. Let the path P j is
attached to complete graph Kj

∆−1 in L2(S), j = 1, 2, . . . ,∆. Further, the
subscript in the notation of complete graphs will be omitted. Let V P =
∪∆

j=1V (P j) and N =
∑∆

j=1 pj , where pj = |V (P j)|. From the definition of
the Wiener index, we have

2W (L2(S)) =
∑

v∈V0

d(v) +
∑

v∈V P

d(v).

Now we calculate the both sums of this equality.

(1) Let v ∈ V0 and v ∈ V (Kn) ∩ V (Km). Then

(4) d(v) =
∑

x∈V0

d(v, x) +
∑

x∈V P

d(v, x).

Note that the core has diameter 2. Then for the first sum of (4) we have

∑

x∈V0

d(v, x) =
∑

x∈V (Kn)∪V (Km)

d(v, x) +
∑

x∈V0\{V (Kn)∪V (Km)}
d(v, x)

= 2(∆− 2) + 2[∆(∆− 1)/2− 2(∆− 2)− 1] = 2
(

∆− 1
2

)
.(5)

Denote V (Pn) by V n, n = 1, 2, . . . ,∆. Then for the second sum of (4), we
have

∑

x∈V P

d(v, x) =
∑

x∈V n∪V m

d(v, x) +
∑

x∈V P\{V n∪V m}
d(v, x)

=
[
pn + pm +

(
pn

2

)
+

(
pm

2

)]
+


2

∑

j 6=n,m

pj +
∑

j 6=n,m

(
pj

2

)
(6)

= 2N +
∆∑

j=1

(
pj

2

)
− pn − pm.

Therefore, the distance of the vertex v ∈ V0 is equal to

d(v) = 2
(

∆− 1
2

)
+

∆∑

j=1

(
pj

2

)
+ 2N − pn − pm.
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Summing the distances of all vertices of the core, we have

∑

v∈V0

d(v) =
(

∆
2

) 
2

(
∆− 1

2

)
+

∆∑

j=1

(
pj

2

)
+ 2N


−N(∆− 1).

Substituting pi = ki − 1 into the later equation, we obtain

(7)
∑

v∈V0

d(v) =
(

∆
2

)
(∆− 2)2 +

1
2

(
∆
2

) ∆∑

j=1

k2
j +

1
4
(∆− 1)(∆− 4)

∆∑

j=1

kj .

(2) Consider the path Pn attached to Kn. Assume that the vertex num-
bering in Pn is consecutive and u1 is the attachment vertex of Pn. Let
ui ∈ V (Pn). Then

(8) d(ui) = dP n(ui) +
∑

x∈V0

d(ui, x) +
∑

x∈V P\V n

d(ui, x).

For the first sum of (8), we have
∑

x∈V0

d(ui, x) =
∑

x∈V (Kn)

d(ui, x) +
∑

x∈V0\V (Kn)

d(ui, x)

= i(∆−1) + (i + 1)[∆(∆−1)/2− (∆−1)] =
(

∆
2

)
i +

(
∆− 1

2

)
.

Denote by wj
1 the terminal vertex of P j attached to Kj

∆−1, j = 1, 2, . . . , ∆.
Then for the second sum of (8), we can write

∑

x∈V P\V n

d(ui, x) =
∑

j 6=n

∑

x∈V j

[ d(ui, w
j
1) + d(wj

1, x) ]

= (i + 1)N − (i + 1)pn +
∆∑

j=1

(
pj

2

)
−

(
pn

2

)
.

Therefore, the sum of distances for all vertices of Pn is equal to

∑

ui∈V n

d(ui, x) = 2W (Pn) +
(

∆
2

) pn∑

i=1

i + pn

(
∆− 1

2

)
+ N

pn∑

i=1

(i + 1)

− pn

pn∑

i=1

(i + 1) + pn

∆∑

j=1

(
pj

2

)
− pn

(
pn

2

)
.
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Summing the later expression over all paths Pn, n = 1, 2, . . . , ∆, we get

∆∑

j=1

∑

ui∈V j

d(ui) = 2
∆∑

j=1

W (P j) +
(

∆
2

) ∆∑

j=1

(
pj + 1

2

)
+

(
∆− 1

2

)
N

+


N

∆∑

j=1

(
pj + 1

2

)
+ N2


−




∆∑

j=1

pj

(
pj + 1

2

)
+

∆∑

j=1

p2
j




+ N
∆∑

j=1

(
pj

2

)
−

∆∑

j=1

pj

(
pj

2

)
.(9)

Substituting pi = ki − 1 into equation (9), we obtain

∆∑

j=1

∑

ui∈V j

d(ui) = −4
∆∑

j=1

(
kj

3

)
+

1
4
(∆2 − 5∆− 4)

∆∑

j=1

k2
j +

∆∑

j=1

kj




∆∑

j=1

k2
j




−



∆∑

j=1

kj




2

+
1
4
(∆2 −∆ + 8)

∆∑

j=1

kj − 3
(

∆
3

)
.(10)

Note that

(11) −4
∆∑

j=1

(
kj

3

)
= −4

∆∑

j=1

(
kj + 1

3

)
+ 2

∆∑

j=1

k2
j − 2

∆∑

j=1

kj ,

(12)
∆∑

j=1

kj




∆∑

j=1

k2
j


−




∆∑

j=1

kj




2

= −2q2 + 2q
∆∑

j=1

(
kj + 1

2

)
.

Finally, applying expressions (2), (7) and (10)− (12), we can write

2W (L2(S)) = 2q
∆∑

j=1

(
kj + 1

2

)
− 4

∆∑

j=1

(
kj + 1

3

)

− 2q2 +
(

∆− 1
2

) ∆∑

j=1

k2
j +

(
∆− 1

2

) ∆∑

j=1

kj + 12
(

∆
4

)
.
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Formula (3) can be applied to calculate the Wiener index of several graphs.
For example, since L(S) ∼= Kn for the (n + 1)-vertex star S with branches
of length 1 (n ≥ 3), one immediately obtains that W (L(Kn)) = n(n − 1)2

(n−2)/4. Let S be a star with ∆ branches of equal length k. Using formula
(2) for the Wiener index of S, we have

W (L2(S)) = ∆
[(

∆− 1
2

)(
k + 1

2

)
+ 3∆

(
k

3

)
− 2

(
k + 1

3

)
+

3
2

(
∆− 1

3

)]
.

In particular, if k = ∆ then W (L2(S)) = ∆(∆−1)(9∆3−4∆2−25∆+18)/12.

Corollary 1. Let S and S′ be stars with the same number of edges and
branches of lengths k1, k2, . . . , k∆ and k′1, k

′
2, . . . , k

′
∆, respectively. Suppose

that for these stars
∑∆

i=1 k2
i =

∑∆
i=1 k′i

2. Then W (L2(S)) = W (L2(S′)) if
and only if W (S) = W (S′).

As an illustration, consider 4 stars with q = 90 edges and ∆ = 6 branches
of length (6, 15, 15, 15, 15, 24), (7, 11, 14, 16, 19, 23), (8, 11, 11, 19, 19, 22)
and (9, 9, 12, 18, 21, 21). These stars and their quadratic line graphs have
the same Wiener index W = 62940.

3. Existence of Stars with Property (1)

In this section, we obtain necessary conditions for a star and its quadratic
line graph to have the same Wiener index.

Theorem 2. Let S be a star with ∆ branches. If ∆ = 3, then W (L2(S)) <
W (S). If ∆ ≥ 7, then W (L2(S)) > W (S).

Proof. Let S be a star with ∆ branches of lengths k1, k2, . . . , k∆.
(1) Let ∆ = 3. Then formula (3) reduces to the obvious inequality

W (S)−W (L2(S)) = 2(k1 + k2 + k3)2 − (k1 + k2 + k3)− (k2
1 + k2

2 + k2
3) > 0.

(2) Let ∆ ≥ 7. Suppose that W (L2(S)) ≤ W (S). By Theorem 1, one can
write

(13)
∆∑

i=1

k2
i ≤

4q2

(∆− 1)(∆− 2)
− q −∆(∆− 3).
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It is a well-known fact that for any numbers a1, a2, . . . , an (see, for example,
[27])

a1 + a2 + · · ·+ an

n
≤

(
a2

1 + a2
2 + · · ·+ a2

n

n

) 1
2

.

Applying the latter relation to k1, k2, . . . , k∆, we have

q2

∆2
=

(k1 + k2 + . . . + k∆)2

∆2
≤ k2

1 + k2
2 + . . . + k2

∆

∆
<

4q2

∆(∆− 1)(∆− 2)
.

Then the following inequality must hold

1
∆

<
4

(∆− 1)(∆− 2)
.

However, it is easy to verify that for ∆ ≥ 7 the last inequality is not valid.
The obtained contradiction implies W (L2(S)) > W (S).

Table 1. The smallest stars having property (1).

∆ q k1 k2 k3 k4 k5 k6 W q k1 k2 k3 k4 k5 k6 W

27 1 2 3 21 – – 3417 90 3 7 8 72 – – 118140
42 1 2 6 33 – – 12572 102 2 3 16 81 – – 175042

4 69 2 6 6 55 – – 53783 105 4 5 12 84 – – 187493
72 1 3 11 57 – – 62112 105 2 9 10 84 – – 187553
90 4 5 9 72 – – 118128 111 4 9 9 89 – – 220195

18 2 3 3 3 7 – 744 30 4 4 4 4 14 – 3360
24 2 3 3 6 10 – 1766 30 3 3 3 8 13 – 3430

5 24 2 2 5 5 10 – 1770 30 1 4 5 7 13 – 3450
24 1 4 4 5 10 – 1774 36 4 4 4 7 17 – 5792
24 1 2 6 6 9 – 1802 36 3 4 6 6 17 – 5796

50 7 7 7 8 10 11 10776 60 7 8 8 10 13 14 18644
50 6 7 8 9 9 11 10780 60 6 8 9 11 12 14 18660

6 50 5 8 9 9 9 10 10792 60 6 7 10 12 12 13 18676
60 8 8 8 9 12 15 18624 60 5 10 10 10 11 14 18680
60 6 9 10 10 10 15 18640 60 5 8 11 12 12 12 18696

Corollary 2. Let S be a star with ∆ branches. If the Wiener index of S and
its quadratic line graph is the same, W (S) = W (L2(S)), then ∆ ∈ {4, 5, 6}.

To prove the existence of stars with property (1), it is naturally to use
computer generation of trees and calculation their Wiener index. Parameters
of the smallest stars with q edges are presented in Table 1.
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Corollary 3. Let S be a star with q edges, ∆ branches and W (S) =
W (L2(S)). Then q is divisible by

(
∆−1

2

)
.

Proof. Let a star S and its quadratic line graph have the same Wiener
index.

If ∆ = 4, then equation (3) can be rewritten as 3
∑4

i=1 k2
i = 2q2−3q−12.

Therefore, q is divisible by 3.
If ∆ = 5, then we have 3

∑5
i=1 k2

i = q2−3q−30. Hence, q is divisible by
3, that is, q = 3t for some integer t. Since the left-hand side of the equality∑5

i=1 k2
i = 3t(t− 1)− 10 is even, q =

∑5
i=1 ki must be even and, therefore,

q ≡ 0 (mod 6).
If ∆ = 6, then 5

∑6
i=1 k2

i = q2 − 5q − 90. Hence q = 5t for some integer
t. Since the left-hand side of the equality

∑6
i=1 k2

i = 5t(t− 1)− 18 is even,
q is also even. This implies that q ≡ 0 (mod 10).

4. Infinite Families of Stars with Property (1)

By Theorem 1, the existence of stars with property (1) is equivalent to the
solvability of some Diophantine equations.

1. ∆ = 4. The corresponding Diophantine equation has the form

(14) 3(k2
1 +k2

2 +k2
3 +k2

4) = 2(k1 +k2 +k3 +k4)2−3(k1 +k2 +k3 +k4)−12.

Note that the number of edges q = k1 + k2 + k3 + k4 is divisible by 3.
In this case, we could not find an infinite family of stars with property

(1). If the above equation gives a polynomial of degree m ≥ 2 of one variable,
one can find at most m integer-valued roots. For example, consider a family
of stars with branches of length k1 = (k2+3k+4)/2, k2 = k3 = 3(2k2−k+2),
and k4 = 52k2−18k+55, where k ≥ 0. Then equation (14) can be rewritten
as follows: k(k−1)(k−2)(11k+3) = 0. Therefore, this family contains only
three stars having property (1).

2. ∆ = 5. In this case, the Diophantine equation is

(15) 3(k2
1 + k2

2 + k2
3 + k2

4 + k2
5) =

(
5∑

i=1

ki

)2

− 3
5∑

i=1

ki − 30,

where q =
∑5

i=1 ki is divisible by 6.
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Now we construct three infinite families of such trees.
Let Sk, k ≥ 0, be a star with 5 branches of length k1 = 1, k2 = 2,

k3 = k4 = 2k2 − k + 5, and k5 = 2k2 + 2k + 5. The number of edges of Sk

is equal to q = 6(k2 + 3).
Stars S∗k , k ≥ 0, of the second family have branches of lengths k∗1 = 1,

k∗2 = 2, k∗3 = 2k2 − 2k + 5 and k∗4 = k∗5 = 2k2 + k + 5. The stars S∗k and Sk

have the same number of edges.

Proposition 2. For every k ≥ 0,

W (Sk) = W (L2(Sk)) = 28k6 + 252k4 − 2k3 + 764k2 + 760,

W (S∗k) = W (L2(S∗k)) = 28k6 + 252k4 + 2k3 + 764k2 + 760.

In order to prove the coincidence of the Wiener indices, it is sufficient to
verify equality (15). Proposition 1 and Theorem 1 can be used for calculating
W for stars and their quadratic line graphs.

One can see that coefficients of the Wiener index of stars from the both
families differ only in sign. The Wiener index of the star Sk and lengths
of its branches can be regarded as abstract polynomials in k: ki = ki(k)
and W (Sk) = W (k), etc. There is a simple relation between branches’
lengths of stars from the considered families. Namely, k∗i (k) = ki(−k), for
all 1 ≤ i ≤ 5. This implies that W ∗(k) = W (−k).

Table 2. Infinite families of stars having property (1) for ∆ = 5.

q k1 k2 k3 k4 k5 W k1 k2 k3 k4 k5 W q k1 k2 k3 k4 k5 W

18 1 2 5 5 5 760 1 2 5 5 5 760 24 1 2 6 6 9 1802
24 1 2 6 6 9 1802 1 2 5 8 8 1806 36 1 2 8 11 14 6076
42 1 2 11 11 17 9624 1 2 9 15 15 9656 60 1 2 14 20 23 28080
72 1 2 20 20 29 48406 1 2 17 26 26 48514 96 1 2 24 33 36 114866

114 1 2 33 33 45 192056 1 2 29 41 41 192312 144 1 2 38 50 53 387406
168 1 2 50 50 65 614610 1 2 45 60 60 615110 204 1 2 56 71 74 1101072
234 1 2 71 71 89 1660792 1 2 65 83 83 1661656 276 1 2 78 96 99 2726276
312 1 2 96 96 117 3936734 1 2 89 110 110 3938106 360 1 2 104 125 128 6049270
402 1 2 125 125 149 8420856 1 2 117 141 141 8422904 456 1 2 134 158 161 12293106
504 1 2 158 158 185 16594906 1 2 149 176 176 16597822 564 1 2 168 195 198 23258756

The third family contains stars S′k, k ≥ 0, with q = 6(k2 + k + 4) edges and
branches of length k1 = 1, k2 = 2, k3 = 2k2 + 6, k4 = 2k2 + 3k + 6, and
k5 = 2k2 + 3k + 9.
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Proposition 3. For every k ≥ 0,

W (S′k) = W (L2(S′k)) = 28k6+84k5+420k4+702k3+1691k2+1349k+1802.

Note that this family contains only asymmetrical trees except the initial
star S′0. Numerical data for the smallest stars of the above infinite families
are presented in Table 2. The star S′0 with branches of length 1, 2, 6, 6, 9
belongs also to the first considered family.

3. ∆ = 6. Lengths of star’s branches must satisfy the following equation

5(k2
1 + k2

2 + k2
3 + k2

4 + k2
5 + k2

6) =

(
6∑

i=1

ki

)2

− 5
6∑

i=1

ki − 90,

where q =
∑6

i=1 ki is divisible by 10.
An infinite family of such trees is formed by stars with the following

lengths of branches: k1 = 3, k2 = 4k2 + 33, k3 = k4 = 4k2 − k + 36,
and k5 = k6 = 4k2 + k + 36. The number of edges of stars are equal to
q = 20(k2 + 9).

Proposition 4. For every k ≥ 0,

W (Sk) = W (L2(Sk)) =
1
3
(2080 k6 + 56256 k4 + 506972 k2 + 1522332).

The first stars of this family are shown in Table 3.
It would be interesting to find an infinite family of stars with ∆ = 4

branches and infinite families of asymmetric stars for ∆ = 4, 6 having prop-
erty (1).

Table 3. Infinite family of stars for ∆ = 6.

q k1 k2 k3 k4 k5 k6 W

180 3 33 36 36 36 36 507444
200 3 37 39 39 41 41 695880
260 3 49 50 50 54 54 1527812
360 3 69 69 69 75 75 4052712
500 3 97 96 96 104 104 10851700
680 3 133 131 131 141 141 27285544
900 3 177 174 174 186 186 63241860

1160 3 229 225 225 239 239 135381512
1460 3 289 284 284 300 300 269884212
1800 3 357 351 351 369 369 505693320
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In conclusion, we reformulate a hypothesis from [13]: a homeomorphic irre-
ducible tree (that is, without vertices of degree two) does not satisfy prop-
erty (1).

References

[1] A.T. Balaban, I. Motoc, D. Bonchev and O. Mekenyan, Topological indices for
structure-activity correlations, Topics Curr. Chem. 114 (1983) 21–55.

[2] S.H. Bertz, Branching in graphs and molecules, Discrete Appl. Math. 19 (1988)
65–83.

[3] S.H. Bertz and W.F. Wright, The graph theory approach to synthetic analysis:
definition and application of molecular complexity and synthetic complexity,
Graph Theory Notes New York 35 (1998) 32–48.

[4] F. Buckley, Mean distance of line graphs, Congr. Numer. 32 (1981) 153–162.

[5] E.R. Canfield, R.W. Robinson and D.H. Rouvray, Determination of the Wiener
molecular branching index for the general tree, J. Comput. Chem. 6 (1985)
598–609.

[6] Chemical Graph Theory — Introduction and Fundamentals, D. Bonchev and
D.H. Rouvray, eds. (Gordon & Breach, New York, 1991).

[7] A.A. Dobrynin and I. Gutman, The Wiener index for trees and graphs of
hexagonal systems, Diskretn. Anal. Issled. Oper. Ser. 2 5 (1998) 34–60, in
Russian.

[8] A.A. Dobrynin, Distance of iterated line graphs, Graph Theory Notes New
York 37 (1998) 8–9.

[9] A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index for trees: theory
and applications, Acta Appl. Math. 66 (2001) 211–249.

[10] A.A. Dobrynin, I. Gutman, S. Klavžar and P. Žigert, Wiener index of hexag-
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