PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 26 | 1 | 113-134
Tytuł artykułu

On the basis number and the minimum cycle bases of the wreath product of some graphs i

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A construction of a minimum cycle bases for the wreath product of some classes of graphs is presented. Moreover, the basis numbers for the wreath product of the same classes are determined.
Słowa kluczowe
Wydawca
Rocznik
Tom
26
Numer
1
Strony
113-134
Opis fizyczny
Daty
wydano
2006
otrzymano
2005-03-03
poprawiono
2005-09-09
Twórcy
  • Department of Mathematics, Yarmouk University, Irbid-Jordan
Bibliografia
  • [1] M. Anderson and M. Lipman, The wreath product of graphs, in: Graphs and Applications (Boulder, Colo., 1982), (Wiley-Intersci. Publ., Wiley, New York, 1985) 23-39.
  • [2] A.A. Ali, The basis number of complete multipartite graphs, Ars Combin. 28 (1989) 41-49.
  • [3] A.A. Ali, The basis number of the direct product of paths and cycles, Ars Combin. 27 (1989) 155-163.
  • [4] A.A. Ali and G.T. Marougi, The basis number of cartesian product of some graphs, J. Indian Math. Soc. 58 (1992) 123-134.
  • [5] A.S. Alsardary and J. Wojciechowski, The basis number of the powers of the complete graph, Discrete Math. 188 (1998) 13-25, doi: 10.1016/S0012-365X(97)00271-9.
  • [6] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (America Elsevier Publishing Co. Inc., New York, 1976).
  • [7] W.-K. Chen, On vector spaces associated with a graph, SIAM J. Appl. Math. 20 (1971) 525-529, doi: 10.1137/0120054.
  • [8] D.M. Chickering, D. Geiger and D. HecKerman, On finding a cycle basis with a shortest maximal cycle, Inform. Process. Lett. 54 (1994) 55-58, doi: 10.1016/0020-0190(94)00231-M.
  • [9] L.O. Chua and L. Chen, On optimally sparse cycles and coboundary basis for a linear graph, IEEE Trans. Circuit Theory 20 (1973) 54-76.
  • [10] G.M. Downs, V.J. Gillet, J.D. Holliday and M.F. Lynch, Review of ring perception algorithms for chemical graphs, J. Chem. Inf. Comput. Sci. 29 (1989) 172-187, doi: 10.1021/ci00063a007.
  • [11] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley, New York, 2000).
  • [12] W. Imrich and P. Stadler, Minimum cycle bases of product graphs, Australas. J. Combin. 26 (2002) 233-244.
  • [13] M.M.M. Jaradat, On the basis number of the direct product of graphs, Australas. J. Combin. 27 (2003) 293-306.
  • [14] M.M.M. Jaradat, The basis number of the direct product of a theta graph and a path, Ars Combin. 75 (2005) 105-111.
  • [15] M.M.M. Jaradat, An upper bound of the basis number of the strong product of graphs, Discuss. Math. Graph Theory 25 (2005) 391-406, doi: 10.7151/dmgt.1291.
  • [16] M.M.M. Jaradat, M.Y. Alzoubi and E.A. Rawashdeh, The basis number of the Lexicographic product of different ladders, SUT J. Math. 40 (2004) 91-101.
  • [17] A. Kaveh, Structural Mechanics, Graph and Matrix Methods. Research Studies Press (Exeter, UK, 1992).
  • [18] G. Liu, On connectivities of tree graphs, J. Graph Theory 12 (1988) 435-459, doi: 10.1002/jgt.3190120318.
  • [19] S. MacLane, A combinatorial condition for planar graphs, Fundamenta Math. 28 (1937) 22-32.
  • [20] M. Plotkin, Mathematical basis of ring-finding algorithms in CIDS, J. Chem. Doc. 11 (1971) 60-63, doi: 10.1021/c160040a013.
  • [21] E.F. Schmeichel, The basis number of a graph, J. Combin. Theory (B) 30 (1981) 123-129, doi: 10.1016/0095-8956(81)90057-5.
  • [22] P. Vismara, Union of all the minimum cycle bases of a graph, Electr. J. Combin. 4 (1997) 73-87.
  • [23] D.J.A. Welsh, Kruskal's theorem for matroids, Proc. Cambridge Phil, Soc. 64 (1968) 3-4, doi: 10.1017/S030500410004247X.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1306
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.