ArticleOriginal scientific text

Title

Extension of several sufficient conditions for Hamiltonian graphs

Authors 1

Affiliations

  1. CEREGMIA-GRIMAAG, Campus de Schoelcher, B.P. 7209, 97275 Schoelcher Cedex, Martinique, France

Abstract

Let G be a 2-connected graph of order n. Suppose that for all 3-independent sets X in G, there exists a vertex u in X such that |N(X∖{u})|+d(u) ≥ n-1. Using the concept of dual closure, we prove that 1. G is hamiltonian if and only if its 0-dual closure is either complete or the cycle C₇ 2. G is nonhamiltonian if and only if its 0-dual closure is either the graph (KrKK)K, 1 ≤ r ≤ s ≤ t or the graph (n+12)KKn-12. It follows that it takes a polynomial time to check the hamiltonicity or the nonhamiltonicity of a graph satisfying the above condition. From this main result we derive a large number of extensions of previous sufficient conditions for hamiltonian graphs. All these results are sharp.

Keywords

hamiltonian graph, dual closure, neighborhood closure

Bibliography

  1. A. Ainouche and N. Christofides, Semi-independence number of a graph and the existence of hamiltonian circuits, Discrete Applied Math. 17 (1987) 213-221, doi: 10.1016/0166-218X(87)90025-4.
  2. A. Ainouche, A common generalization of Chvàtal-Erdös and Fraisse's sufficient conditions for hamiltonian graphs, Discrete Math. 142 (1995) 1-19, doi: 10.1016/0012-365X(94)00002-Z.
  3. A. Ainouche, Extensions of a closure condition: the β-closure (Rapport de Recherche CEREGMIA, 2001).
  4. A. Ainouche and I. Schiermeyer, 0-dual closure for several classes of graphs, Graphs and Combinatorics 19 (2003) 297-307, doi: 10.1007/s00373-002-0523-y.
  5. A. Ainouche and S. Lapiquonne, Variations on a strong sufficient condition for hamiltonian graphs, submitted.
  6. J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, Dept. of Combinatorics and Optimization, University of Waterloo, Ont. Canada.
  7. J.A. Bondy and V. Chvàtal, A method in graph theory, Discrete Math. 15 (1976) 111-135, doi: 10.1016/0012-365X(76)90078-9.
  8. G. Chen, One sufficient condition for Hamiltonian Graphs, J. Graph Theory 14 (1990) 501-508, doi: 10.1002/jgt.3190140414.
  9. G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.
  10. R.J. Faudree, R.J. Gould, M.S. Jacobson and L.S. Lesniak, Neighborhood unions and highly Hamiltonian Graphs, Ars Combin. 31 (1991) 139-148.
  11. R.J. Faudree, R.J. Gould, M.S. Jacobson and R.H. Shelp, Neighborhood unions and Hamiltonian properties in Graphs, J. Combin. Theory (B) 47 (1989) 1-9, doi: 10.1016/0095-8956(89)90060-9.
  12. E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degrees sums and neighborhood intersections, Discrete Math. 90 (1991) 41-52, doi: 10.1016/0012-365X(91)90094-I.
  13. P. Fraisse, A new sufficient condition for Hamiltonian Graphs, J. Graph Theory 10 (1986) 405-409, doi: 10.1002/jgt.3190100316.
  14. T. Feng, A note on the paper A new sufficient condition for hamiltonian graph, Systems Sci. Math. Sci. 5 (1992) 81-83.
  15. I. Schiermeyer, Computation of the 0-dual closure for hamiltonian graphs, Discrete Math. 111 (1993) 455-464, doi: 10.1016/0012-365X(93)90183-T.
  16. O. Ore, Note on Hamiltonian circuits, Am. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.
Pages:
23-39
Main language of publication
English
Received
2004-09-21
Accepted
2005-09-22
Published
2006
Exact and natural sciences