ArticleOriginal scientific text

Title

On short cycles through prescribed vertices of a polyhedral graph

Authors 1

Affiliations

  1. Department of Mathematics, Technische Universität Ilmenau, Postfach 0565, D-98684 Ilmenau, Germany

Abstract

Guaranteed upper bounds on the length of a shortest cycle through k ≤ 5 prescribed vertices of a polyhedral graph or plane triangulation are proved.

Keywords

polyhedral graph, triangulation, short cycle, prescribed vertices

Bibliography

  1. B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993) 147-155, doi: 10.1007/BF01303200.
  2. G.A. Dirac, 4-crome Graphen und vollständige 4-Graphen, Math. Nachr. 22 (1960) 51-60, doi: 10.1002/mana.19600220106.
  3. F. Göring, J. Harant, E. Hexel and Zs. Tuza, On short cycles through prescribed vertices of a graph, Discrete Math. 286 (2004) 67-74, doi: 10.1016/j.disc.2003.11.047.
  4. J. Harant, On paths and cycles through specified vertices, Discrete Math. 286 (2004) 95-98, doi: 10.1016/j.disc.2003.11.059.
  5. R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173, 2000).
  6. A.K. Kelmans and M.V. Lomonosov, When m vertices in a k-connected graph cannot be walked round along a simple cycle, Discrete Math. 38 (1982) 317-322, doi: 10.1016/0012-365X(82)90299-0.
  7. T. Sakai, Long paths and cycles through specified vertices in k-connected graphs, Ars Combin. 58 (2001) 33-65.
Pages:
419-426
Main language of publication
English
Received
2004-09-03
Accepted
2005-02-18
Published
2005
Exact and natural sciences