ArticleOriginal scientific text

Title

Note on partitions of planar graphs

Authors 1, 1, 2

Affiliations

  1. Rand Afrikaans University, Johannesburg, Republic of South Africa
  2. Department of Applied Mathematics, Faculty of Economics, Technical University, B. Nĕmcovej, 040 01 Košice, Slovak Republic

Abstract

Chartrand and Kronk in 1969 showed that there are planar graphs whose vertices cannot be partitioned into two parts inducing acyclic subgraphs. In this note we show that the same is true even in the case when one of the partition classes is required to be triangle-free only.

Keywords

planar graph, hereditary property of graphs, forest and triangle-free graph

Bibliography

  1. K. Appel and W. Haken, Every planar graph is four colourable, Illinois J. Math. 21 (1977) 429-567.
  2. M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
  3. M. Borowiecki, I. Broere and P. Mihók, Minimal reducible bounds for planar graphs, Discrete Math. 212 (2000) 19-27, doi: 10.1016/S0012-365X(99)00205-8.
  4. G. Chartrand and H. H. Kronk, The point arboricity of planar graphs, J. London Math. Soc. 44 (1969) 612-616, doi: 10.1112/jlms/s1-44.1.612.
  5. T. Kaiser and R. Skrekovski, Planar graph colorings without short monochromatic cycles, J. Graph Theory 46 (2004) 25-38, doi: 10.1002/jgt.10167.
  6. K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930) 271-283.
  7. P. Mihók, Minimal reducible bound for outerplanar and planar graphs, Discrete Math. 150 (1996) 431-435, doi: 10.1016/0012-365X(95)00211-E.
  8. C. Thomassen, Decomposing a planar graph into degenerate graphs, J. Combin. Theory (B) 65 (1995) 305-314, doi: 10.1006/jctb.1995.1057.
Pages:
211-215
Main language of publication
English
Received
2003-12-05
Accepted
2004-11-03
Published
2005
Exact and natural sciences