ArticleOriginal scientific text

Title

Arithmetically maximal independent sets in infinite graphs

Authors 1

Affiliations

  1. Institute of Computer Science, Polish Academy of Sciences, 21 Ordona street, 01-237 Warsaw, Poland

Abstract

Families of all sets of independent vertices in graphs are investigated. The problem how to characterize those infinite graphs which have arithmetically maximal independent sets is posed. A positive answer is given to the following classes of infinite graphs: bipartite graphs, line graphs and graphs having locally infinite clique-cover of vertices. Some counter examples are presented.

Keywords

infinite graph, independent set, arithmetical maximal set, line graph

Bibliography

  1. R. Aharoni, König's duality theorem for infinite bipartite graphs, J. London Math. Society 29 (1984) 1-12, doi: 10.1112/jlms/s2-29.1.1.
  2. J.C. Bermond and J.C. Meyer, Graphe représentatif des aretes d'un multigraphe, J. Math. Pures Appl. 52 (1973) 229-308.
  3. Y. Caro and Z. Tuza, Improved lower bounds on k-independence, J. Graph Theory 15 (1991) 99-107, doi: 10.1002/jgt.3190150110.
  4. M.J. Jou and G.J. Chang, Algorithmic aspects of counting independent sets, Ars Combinatoria 65 (2002) 265-277.
  5. J. Komar and J. Łoś, König's theorem in the infinite case, Proc. of III Symp. on Operat. Res., Mannheim (1978) 153-155.
  6. C.St.J.A. Nash-Williams, Infinite graphs - a survey, J. Combin. Theory 3 (1967) 286-301, doi: 10.1016/S0021-9800(67)80077-2.
  7. K.P. Podewski and K. Steffens, Injective choice functions for countable families, J. Combin. Theory (B) 21 (1976) 40-46, doi: 10.1016/0095-8956(76)90025-3.
  8. K. Steffens, Matching in countable graphs, Can. J. Math. 29 (1976) 165-168, doi: 10.4153/CJM-1977-016-8.
  9. J. Zito, The structure and maximum number of maximum independent sets in trees, J. Graph Theory 15 (1991) 207-221, doi: 10.1002/jgt.3190150208.
Pages:
167-182
Main language of publication
English
Received
2003-11-28
Accepted
2005-03-08
Published
2005
Exact and natural sciences