ArticleOriginal scientific text
Title
Distance coloring of the hexagonal lattice
Authors 1, 2
Affiliations
- Universidad Carlos III de Madrid, Department of Business Administration, Calle Madrid 126, 289 03 Getafe (Madrid), Spain
- P.J. Šafárik University, Institute of Mathematics, Jesenná 5, 041 54 Košice, Slovakia
Abstract
Motivated by the frequency assignment problem we study the d-distant coloring of the vertices of an infinite plane hexagonal lattice H. Let d be a positive integer. A d-distant coloring of the lattice H is a coloring of the vertices of H such that each pair of vertices distance at most d apart have different colors. The d-distant chromatic number of H, denoted , is the minimum number of colors needed for a d-distant coloring of H. We give the exact value of for any d odd and estimations for any d even.
Keywords
distance coloring, distant chromatic number, hexagonal lattice of the plane, hexagonal tiling, hexagonal grid, radio channel frequency assignment
Bibliography
- G.J. Chang and D. Kuo, The L(2,1)-labeling problem on graphs, SIAM J. Discrete Math. 9 (1996) 309-316, doi: 10.1137/S0895480193245339.
- G. Fertin, E. Godard and A. Raspaud, Acyclic and k-distance coloring of the grid, Information Processing Letters 87 (2003) 51-58, doi: 10.1016/S0020-0190(03)00232-1.
- J.P. Georges and D.M. Mauro, Generalized vertex labelings with a condition at distance two, Congr. Numer. 109 (1995) 141-159.
- J.R. Griggs and R.K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586-595, doi: 10.1137/0405048.
- W.K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980) 1497-1514, doi: 10.1109/PROC.1980.11899.
- J. van den Heuvel, R.A. Leese and M.A. Shepherd, Graph labeling and radio Channel assignment, J. Graph Theory 29 (1998) 263-283, doi: 10.1002/(SICI)1097-0118(199812)29:4<263::AID-JGT5>3.0.CO;2-V
- J. van den Heuvel and S. McGuinness, Coloring the square of a planar graph, J. Graph Theory 42 (2003) 110-124, doi: 10.1002/jgt.10077.
- S. Jendrol' and Z. Skupień, Local structures in plane maps and distance colourings, Discrete Math. 236 (2001) 167-177, doi: 10.1016/S0012-365X(00)00440-4.
- T.R. Jensen and B. Toft, Graph Coloring Problems (John-Wiley & Sons, New York, 1995).
- F. Kramer and H. Kramer, Ein farbungsproblem der knotenpunkte eines graphen bezuglich der distanz, P. Rev. Roumaine Math. Pures Appl. 14 (1969) 1031-1038.
- V.H. MacDonald, The cellular concept, Bell System Technical Journal 58 (1979) 15-41.
- C. McDiarmid and B. Reed, Colouring proximity graphs in the plane, Discrete Math. 199 (1999) 123-137, doi: 10.1016/S0012-365X(98)00292-1.
- A. Sevcíková, Distant Chromatic Number of the Planar Graphs (Manuscript, P.J. Šafárik University, 2001).
- G. Wegner, Graphs with given Diameter and a Colouring Problem (Preprint, University of Dortmund, 1977).