PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 25 | 1-2 | 35-44
Tytuł artykułu

Total domination in categorical products of graphs

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several of the best known problems and conjectures in graph theory arise in studying the behavior of a graphical invariant on a graph product. Examples of this are Vizing's conjecture, Hedetniemi's conjecture and the calculation of the Shannon capacity of graphs, where the invariants are the domination number, the chromatic number and the independence number on the Cartesian, categorical and strong product, respectively. In this paper we begin an investigation of the total domination number on the categorical product of graphs. In particular, we show that the total domination number of the categorical product of a nontrivial tree and any graph without isolated vertices is equal to the product of their total domination numbers. In the process we establish a packing and covering equality for trees analogous to the well-known result of Meir and Moon. Specifically, we prove equality between the total domination number and the open packing number of any tree of order at least two.
Wydawca
Rocznik
Tom
25
Numer
1-2
Strony
35-44
Opis fizyczny
Daty
wydano
2005
otrzymano
2003-10-24
poprawiono
2004-04-19
Twórcy
  • Department of Mathematics, Furman University, Greenville, South Carolina 29613, USA
Bibliografia
  • [1] B.D. Acharya, Graphs whose r-neighbourhoods form conformal hypergraphs, Indian J. Pure Appl. Math. 16 (5) (1985) 461-464.
  • [2] B.L. Hartnell and D.F. Rall, Lower bounds for dominating Cartesian products, J. Combin. Math. Combin. Comput. 31 (1999) 219-226.
  • [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
  • [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, Inc. New York, 1998).
  • [5] M.A. Henning, Packing in trees, Discrete Math. 186 (1998) 145-155, doi: 10.1016/S0012-365X(97)00228-8.
  • [6] M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graphs, Graphs and Combinatorics, to appear.
  • [7] M.A. Henning and P.J. Slater, Open packing in graphs, J. Combin. Math. Combin. Comput. 29 (1999) 3-16.
  • [8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley & Sons, Inc. New York, 2000).
  • [9] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253-267, doi: 10.1016/0012-365X(72)90006-4.
  • [10] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233.
  • [11] R.J. Nowakowski and D.F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16 (1996) 53-79, doi: 10.7151/dmgt.1023.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1257
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.