ArticleOriginal scientific text

Title

Even [a,b]-factors in graphs

Authors 1, 2

Affiliations

  1. Laboratoire de Recherche en Informatique, UMR 8623 Bât. 490, Université Paris Sud, 91405 Orsay, France
  2. Department of Mathematics, Aalborg University, Fredrik Bajers Vej 7G, DK-9220 Aalborg Øst, Denmark

Abstract

Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.

Keywords

even factor, eulerian, spanning subgraph

Bibliography

  1. J. Akiyama and M. Kano, Factors and factorizations of graphs - a survey, J. Graph Theory 9 (1985) 1-42, doi: 10.1002/jgt.3190090103.
  2. A. Amahashi, On factors with all degrees odd, Graphs and Combin. 1 (1985) 111-114, doi: 10.1007/BF02582935.
  3. Mao-Cheng Cai, On some factor theorems of graphs, Discrete Math. 98 (1991) 223-229, doi: 10.1016/0012-365X(91)90378-F.
  4. G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graph Theory (McGraw-Hill, Inc., 1993).
  5. Y. Cui and M. Kano, Some results on odd factors of graphs, J. Graph Theory 12 (1988) 327-333, doi: 10.1002/jgt.3190120305.
  6. M. Kano, [a,b] -factorization of a graph, J. Graph Theory 9 (1985) 129-146, doi: 10.1002/jgt.3190090111.
  7. M. Kano and A. Saito, [a,b] -factors of a graph, Discrete Math. 47 (1983) 113-116, doi: 10.1016/0012-365X(83)90077-8.
  8. M. Kano, A sufficient condition for a graph to have [a,b] -factors, Graphs Combin. 6 (1990) 245-251, doi: 10.1007/BF01787576.
  9. M. Kouider and M. Maheo, Connected (a,b)-factors in graphs, 1998. Research report no. 1151, LRI, (Paris Sud, Centre d'Orsay). Accepted for publication in Combinatorica.
  10. M. Kouider and M. Maheo, 2 edge-connected [2,k] -factors in graphs, JCMCC 35 (2000) 75-89.
  11. M. Kouider and P.D. Vestergaard, On even [2,b] -factors in graphs, Australasian J. Combin. 27 (2003) 139-147.
  12. Y. Li and M. Cai, A degree condition for a graph to have [a,b] -factors, J. Graph Theory 27 (1998) 1-6, doi: 10.1002/(SICI)1097-0118(199801)27:1<1::AID-JGT1>3.0.CO;2-U
  13. L. Lovász, Subgraphs with prescribed valencies, J. Comb. Theory 8 (1970) 391-416, doi: 10.1016/S0021-9800(70)80033-3.
  14. L. Lovász, The factorization of graphs II, Acta Math. Acad. Sci. Hungar. 23 (1972) 223-246, doi: 10.1007/BF01889919.
  15. J. Topp and P.D. Vestergaard, Odd factors of a graph, Graphs and Combin. 9 (1993) 371-381, doi: 10.1007/BF02988324.
Pages:
431-441
Main language of publication
English
Received
2003-04-22
Accepted
2003-10-09
Published
2004
Exact and natural sciences