ArticleOriginal scientific text
Title
Linear forests and ordered cycles
Authors 1, 2, 3, 3, 4,
Affiliations
- Georgia State University, Atlanta, GA 30303
- University of Memphis, Memphis, TN 38152
- Emory University, Atlanta, GA 30322
- Drew University, Madison, NJ 07940
- Emory University, Atlanta, GA 30322, Technische Universität Berlin, Berlin, Germany
Abstract
A collection (1 ≤ t ≤ k) of t disjoint paths, s of them being singletons with |V(L)| = k is called a (k,t,s)-linear forest. A graph G is (k,t,s)-ordered if for every (k,t,s)-linear forest L in G there exists a cycle C in G that contains the paths of L in the designated order as subpaths. If the cycle is also a hamiltonian cycle, then G is said to be (k,t,s)-ordered hamiltonian. We give sharp sum of degree conditions for nonadjacent vertices that imply a graph is (k,t,s)-ordered hamiltonian.
Keywords
hamilton cycles, graph linkages
Bibliography
- B. Bollobás and A. Thomason, Highly Linked Graphs, Combinatorics, Probability, and Computing, (1993) 1-7.
- J.R. Faudree, R.J. Faudree, R.J. Gould, M.S. Jacobson and L. Lesniak, On k-Ordered Graphs, J. Graph Theory 35 (2000) 69-82, doi: 10.1002/1097-0118(200010)35:2<69::AID-JGT1>3.0.CO;2-I
- R.J. Faudree, R.J., Gould, A. Kostochka, L. Lesniak, I. Schiermeyer and A. Saito, Degree Conditions for k-ordered hamiltonian graphs, J. Graph Theory 42 (2003) 199-210, doi: 10.1002/jgt.10084.
- Z. Hu, F. Tian and B. Wei, Long cycles through a linear forest, J. Combin. Theory (B) 82 (2001) 67-80, doi: 10.1006/jctb.2000.2022.
- H. Kierstead, G. Sarkozy and S. Selkow, On k-Ordered Hamiltonian Graphs, J. Graph Theory 32 (1999) 17-25, doi: 10.1002/(SICI)1097-0118(199909)32:1<17::AID-JGT2>3.0.CO;2-G
- W. Mader, Existenz von n-fach zusammenhängenden Teilgraphen in Graphen genügend grosser Kantendichte, Abh. Math. Sem. Univ. Hamburg 37 (1972) 86-97, doi: 10.1007/BF02993903.
- L. Ng and M. Schultz, k-Ordered Hamiltonian Graphs, J. Graph Theory 24 (1997) 45-57, doi: 10.1002/(SICI)1097-0118(199701)24:1<45::AID-JGT6>3.0.CO;2-J
- R. Thomas and P. Wollan, An Improved Edge Bound for Graph Linkages, preprint.