Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
We examine decompositions of complete graphs with an even number of vertices, $K_{2n}$, into n isomorphic spanning trees. While methods of such decompositions into symmetric trees have been known, we develop here a more general method based on a new type of vertex labelling, called flexible q-labelling. This labelling is a generalization of labellings introduced by Rosa and Eldergill.
Słowa kluczowe
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
345-353
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
- University of Minnesota Duluth, Department of Mathematics and Statistics, University of Minnesota Duluth, 1117 University Dr., Duluth, MN 55812, U.S.A.
- Technical University Ostrava
Bibliografia
- [1] J. Bosák, Decompositions of Graphs (Kluwer, Dordrecht, 1990).
- [2] P. Eldergill, Decompositions of the complete graph with an even number of vertices (M.Sc. thesis, McMaster University Hamilton, 1997).
- [3] D. Froncek and M. Kubesa, Factorizations of complete graphs into spanning trees, Congressus Numerantium 154 (2002) 125-134.
- [4] J.A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics DS6 (2001).
- [5] G. Ringel, Problem 25, in: Theory of Graphs and its Applications, (Proc. Symp. Smolenice 1963) ed., M. Fiedler (Academia, Prague, 1964) 162.
- [6] A. Rosa, Cyclic decompositions of complete graphs (Ph.D. thesis, Slovak Academy of Science, Bratislava, 1965).
- [7] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Intl. Symp. Rome 1966), Gordon and Breach, Dunod, Paris (1967) 349-355.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1235