ArticleOriginal scientific text

Title

Cycle-pancyclism in bipartite tournaments I

Authors 1

Affiliations

  1. Instituto de Matemáticas, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D.F., MEXICO

Abstract

Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper, the following question is studied: What is the maximum intersection with γ of a directed cycle of length k? It is proved that for an even k in the range 4 ≤ k ≤ [(n+4)/2], there exists a directed cycle Ch(k) of length h(k), h(k) ∈ {k,k-2} with |A(Ch(k))A(γ)|h(k)-3 and the result is best possible. In a forthcoming paper the case of directed cycles of length k, k even and k < [(n+4)/2] will be studied.

Keywords

bipartite tournament, pancyclism

Bibliography

  1. B. Alpach, Cycles of each length in regular tournaments, Canad. Math. Bull. 10 (1967) 283-286, doi: 10.4153/CMB-1967-028-6.
  2. L.W. Beineke, A tour through tournaments or bipartite and ordinary tournaments: A comparative survey, J. London Math. Soc., Lect. Notes Ser. 52 (1981) 41-55.
  3. L.W. Beineke and V. Little, Cycles in bipartite tournaments, J. Combin. Theory (B) 32 (1982) 140-145, doi: 10.1016/0095-8956(82)90029-6.
  4. C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1976).
  5. J.C. Bermond and C. Thomasen, Cycles in digraphs - A survey, J. Graph Theory 5 (43) (1981) 145-147.
  6. H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments I, Graphs and Combin. 11 (1995) 233-243, doi: 10.1007/BF01793009.
  7. H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments II, Graphs and Combin. 12 (1996) 9-16, doi: 10.1007/BF01858440.
  8. H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments III, Graphs and Combin. 13 (1997) 57-63, doi: 10.1007/BF01202236.
  9. H. Galeana-Sánchez and S. Rajsbaum, A Conjecture on Cycle-Pancyclism in Tournaments, Discuss. Math. Graph Theory 18 (1998) 243-251, doi: 10.7151/dmgt.1080.
  10. G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: A survey, J. Graph Theory 19 (1995) 481-505, doi: 10.1002/jgt.3190190405.
  11. R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 33-38, doi: 10.1007/BF02122681.
  12. L. Volkmann, Cycles in multipartite tournaments, results and problems, Discrete Math. 245 (2002) 19-53, doi: 10.1016/S0012-365X(01)00419-8.
  13. C.Q. Zhang, Vertex even-pancyclicity in bipartite tournaments, J. Nanjing Univ. Math., Biquart 1 (1981) 85-88.
  14. K.M. Zhang and Z.M. Song, Cycles in digraphs, a survey, J. Nanjing Univ., Nat. Sci. Ed. 27 (1991) 188-215.
Pages:
277-290
Main language of publication
English
Published
2004
Exact and natural sciences