ArticleOriginal scientific text

Title

Vertex-disjoint copies of K¯₄

Authors 1

Affiliations

  1. Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Abstract

Let G be a graph of order n. Let K¯ₗ be the graph obtained from Kₗ by removing one edge. In this paper, we propose the following conjecture: Let G be a graph of order n ≥ lk with δ(G) ≥ (n-k+1)(l-3)/(l-2)+k-1. Then G has k vertex-disjoint K¯ₗ. This conjecture is motivated by Hajnal and Szemerédi's [6] famous theorem. In this paper, we verify this conjecture for l=4.

Keywords

extremal graph theory, vertex disjoint copy, minimum degree

Bibliography

  1. N. Alon and R. Yuster, H-factor in dense graphs, J. Combin. Theory (B) 66 (1996) 269-282, doi: 10.1006/jctb.1996.0020.
  2. G.A. Dirac, On the maximal number of independent triangles in graphs, Abh. Math. Semin. Univ. Hamb. 26 (1963) 78-82, doi: 10.1007/BF02992869.
  3. Y. Egawa and K. Ota, Vertex-Disjoint K1,3 in graphs, Discrete Math. 197/198 (1999), 225-246.
  4. Y. Egawa and K. Ota, Vertex-disjoint paths in graphs, Ars Combinatoria 61 (2001) 23-31.
  5. Y. Egawa and K. Ota, K1,3-factors in graphs, preprint.
  6. A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Colloq. Math. Soc. János Bolyai 4 (1970) 601-623.
  7. K. Kawarabayashi, K¯₄-factor in a graph, J. Graph Theory 39 (2002) 111-128, doi: 10.1002/jgt.10007.
  8. K. Kawarabayashi, F-factor and vertex disjoint F in a graph, Ars Combinatoria 62 (2002) 183-187.
  9. J. Komlós, Tiling Túran theorems, Combinatorica 20 (2000) 203-218.
Pages:
249-262
Main language of publication
English
Received
2002-08-31
Accepted
2004-02-06
Published
2004
Exact and natural sciences