ArticleOriginal scientific text

Title

Minimal regular graphs with given girths and crossing numbers

Authors 1, 2

Affiliations

  1. Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
  2. Faculty of Engineering and Technology, Multimedia University, 75450 Malacca, Malaysia

Abstract

This paper investigates on those smallest regular graphs with given girths and having small crossing numbers.

Keywords

regular graphs, girth, crossing numbers

Bibliography

  1. G. Chartrand and L. Lesniak, Graphs & Digraphs (Third edition), (Chapman & Hall, New York 1996).
  2. R.K. Guy and A. Hill, The crossing number of the complement of a circuit, Discrete Math. 5 (1973) 335-344, doi: 10.1016/0012-365X(73)90127-1.
  3. D.J. Kleitman, The crossing number of K5,n, J. Combin. Theory B 9 (1970) 315-323, doi: 10.1016/S0021-9800(70)80087-4.
  4. M. Koman, On nonplanar graphs with minimum number of vertices and a given girth, Commentationes Math. Univ. Carolinae (Prague) 11 (1970) 9-17.
  5. D. McQuillan and R.B. Richter, On 3-regular graphs having crossing number at least 2, J. Graph Theory, 18 (1994) 831-839, doi: 10.1002/jgt.3190180807.
  6. M. Nihei, On the girths of regular planar graphs, Pi Mu Epsilon J. 10 (1995) 186-190.
  7. B. Richter, Cubic graphs with crossing number two, J. Graph Theory 12 (1988) 363-374, doi: 10.1002/jgt.3190120308.
  8. R.D. Ringeisen and L.W. Beineke, On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980) 145-155, doi: 10.1002/jgt.3190040203.
  9. G.F. Royle, Graphs and multigraphs, in: C.J. Colbourn and J.H. Dinitz ed., The CRC Handbook of Combinatorial Designs, (CRC Press, New York, 1995) 644-653.
  10. G.F. Royle, Cubic cages, http://www.cs.uwa.edu.au/~gordon/cages/index.html.
  11. P.K. Wong, Cages - a survey, J. Graph Theory 6 (1982) 1-22, doi: 10.1002/jgt.3190060103.
Pages:
223-237
Main language of publication
English
Published
2004
Exact and natural sciences