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Abstract

A graph G is said to be H-saturated if G is H-free i.e., (G has
no subgraph isomorphic to H) and adding any new edge to G creates
a copy of H in G. In 1986 L. Kaszonyi and Zs. Tuza considered the
following problem: for given m and n find the minimum size sat(n; Py,)
of P,,-saturated graph of order n. They gave the number sat(n; Py,)
for n big enough. We deal with similar problem for bipartite graphs.
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1. Preliminaries

We deal with simple graphs without loops and multiple edges. As usual
V(G) and E(G) denote the vertex set and the edge set, respectively, |G|, e(G)
the order and the size of G, and d¢(v) the degree of v € V(G). By P, we
denote the path of order m, and by K,, the complete graph on m vertices.
We define G, to be a bipartite graph where a, b are the numbers of vertices
in bipartition sets. Let us consider two graphs G and H. We say that G is
H -free if it contains no copy of H, that is, no subgraph of G is isomorphic
to H. A graph G is H-saturated if G is H-free and adding any new edge e to
G creates a copy of H. In particular complete H -free graphs trivially satisfy
this condition and therefore are H-saturated. We define also:

*This work was carried out while the second author was visiting University of Orleans.
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ex(n; F) = max{e(G) : |G| = n,G is F-saturated},

Ex(n; F) ={G : |G| =n,e(G) = ex(n; F),G is F-saturated},
sat(n; F) = min{e(G) : |G| = n, G is F-saturated},

Sat(n; F) = {G : |G| = n,e(G) = sat(n; F),G is F-saturated}.

Observe that in the definitions of Ex(n; F') and ex(n; F') the word saturated
may be replaced with free. The first results concerning saturated graphs
were given by Turan [6] in 1941 who asked for ex(n; K,) and Exz(n; K)).
Later results were given by P. Erdés, A. Hajnal and J.W. Moon [3] (see
also [2]) in 1964 who proved

Sat(n;Kp)=<p§2 ) + (p=2)(n—p+2), (r=2p=2)

Sat(n; Kp) = {Kp-2 % Kn_pya}.

A corresponding theorem for bipartite graphs was given by N. Alon in 1983
(see [1]). The extremal problem for P,,-saturated bipartite graphs was solved
by A. Gyarfds, C.C. Rousseau and R.H. Schelp [4]. We are interested in
finding P,,-saturated bipartite graphs with minimum size. In Section 2 we
present some results concerning P,,-saturated bipartite graphs. The proofs
are given in Section 3.

In [5] L. Készonyi and Zs. Tuza, gave the following results on Sat(n; P,,)
and sat(n; Pp,).

Theorem 1 ([5]).

sat(n; P3) = {ZJ )

Sat(n; P3) = { IZZ UK, ZZ ZZ§Z+ 1,
sat(n; Py) = { Z+2 ZZ Zzzll?%- 1,

Sat(n; Py) = { ?/j{i 1)K, UKy Z Z i ;:’Jr 1

-2
sat(n; Ps) = n— {n(j J—l for n > 6.
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Let
{ 3-28"1 2 if m =2k k> 2,
Ay =

2k+1 _ 9 if m=2k+1,k>2.

Then sat(n; Pn) =n— =] forn > ap.

Sat(n; Ps) for n > 6.

Figure 1

2. P,-Saturated Bipartite Graphs with Minimum
Size

Let G = (B,W;FE) be a bipartite graph with vertex set V= BU W,

BNW = (. For convenience of the reader we call the set B the set of

black vertices and the set W the set of white vertices. For bipartite graphs

G = (B,W;E) and F = (B',W’; E') such that the sets B, W, B’ and W’
are mutually disjoint we define: GUF = (BUB' W UW'; EUFE').

Definition 1. Let G = (B, W; E) be a bipartite graph. Then G is called
F-saturated if

1. G is F-free,
2. (zeByeW,zy¢ E)=GUzxy D F.

We denote also
satyip(p, ¢; F') = min{e(G) : |B| = p, |W| = ¢q,G is F-saturated},

Satyip(p, q; F') ={G = (B,W; E) : |B| = p, [W| = q,e(G) = satyip(p, q; '),
G is F-saturated}.

Proposition 2. saty,(p,q; P3) =p, p < q. [ |
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1.,

Satyip(p, q; P3).

Figure 2

Proposition 3. saty,(p,q; P1) =p, 2<p<q. [

NSNS N

Satyip(p, ¢; Pa).-
Figure 3

Proposition 4. Let p > 2,9 > 3,p < q. Then

2p if 2p<gq, p is even or q =2p — 2,
if 2p<gq, p is odd,
satyip(p, ¢ P5) = p+[g] if 3<q<2p,q#2p-2,
5 if p=q=3,
4 if p=

mod 3) and 3qg < 4p — 2 or
p+q_m_1 it ( ) q<4p

p=2
3 p = 1(mod 3) and 3¢ < 4p — 1,
satvip(p, 4; Ps) = P . p=¢q=1(mod 3) or
p+q_L3J i p = 0(mod 3) and 3¢ < 4p — 1,

2p otherwise.
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Definition 2. Let us suppose that m > 7 is an integer. Then A,, is the fol-
lowing tree. All penultimate vertices of A,, have degree two and all vertices
of A,,, which are neither penultimate nor pendant have their degree equal to
three. If m = 2k, k > 4 then A,, has two centers u € B and w € W and each
component of G — uw has k — 1 levels (see Figure 4). If m =2k + 1,k > 3
then A,, has one center and k levels. The center is black when k is even
(see Figure 5).

AN

When m = 2k, k > 4 we observe that |B| = |W|=3-2F3 — 1.

SERELESRE

Figure 5

If m = 2k + 1,k > 3 and the center is white then in A,, we have |B| =
4.2F3 1 and [W| =523 —1 when k is odd or |[W| =4-2¥3 —1 and
|B| = 5-2F3 — 1 when k is even. Denote by v the center of Agyyq,k > 3.
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Observe that if |B| < |[W]| then for m = 2k + 1,k > 3 we obtain |B| =
4.2F3 1 |W|=5-2"3 —1and v € Bif kis even or v € W if k is odd.

Remark 1. Observe that A,, is Pp,-saturated and P,,_1-saturated for every
m>"T.

Remark 2. [Ay, is Poi-saturated for k > 4,1 =1,2,...,n.

Remark 3. The union of two copies of Agx11 is Popy1-saturated, k > 3, if
and only if their centers have the same colour (see Figure 6).

Theorem 6. Let k > 4 and let G = (B,W; E) be a Psy-saturated bipartite
graph without isolated vertices and with the minimum size, |B| = p, |W| =
¢,3-23 - 1<p<q. Then

e(G):p—Fq—{ﬁ J

Theorem 7. Let k > 3 and let G = (B, W; E) be a Psp41-saturated bipartite
graph without isolated vertices and with the minimum size, |B| = p < |W| =
q,4-283 —1<p, 5-2873 < ¢q. Then

p+q-— 5,219%_1 +1 if 5,2k€3_1 = {5.2k€3—1J < 4.2,9?3_1 ,
e(G) =

p+q-— min{ ka?g_lJ, {5.2,633_1J } otherwise.

Figure 6
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Theorem 6 and 7 imply the following corollary.
Corollary 8. If |B| =p,|W|=¢,3-2"3 -1 <p<q,k >4 then
. p
salvip(p, 43 Por) <p+q — {32’“—73—1J

If|Bl=p,|W|=q,p<q4-283-1<p, 52873 < ¢, then

satyip(p, ¢; Pog41)

B pP+q— 52%3_1 +1 if 5.2k23_1 = {5,2k23_1J < 4.2191—?3_1 )
p+q-— min{ {4-2’£LIJ , {5.2kg371J } otherwise. -
3. Proofs

We first give some definitions. The graphs K, and K, ; are called stars
when n > 1 and non-trivial stars if n > 2. Let K13 and K, 1 be two vertex
disjoint stars. Then the tree obtained by join of their centers is called
double star S?, (see Figure 7). A double star S2, is said to be non-trivial
ifa>0,b> 0and a+b > 3. Propositions 2 and 3 are evident. To prove
Proposition 4 we give Lemmas 9-13 and Proposition 14 below.

Lemma 9. Let G = (B,W; E) be a connected bipartite Ps-saturated graph
|B| = p,|W| = q. Then either

1. G is a star or

2. G is non-trivial double star ngb or else
3. G=Kyo.

Lemma 10. Let G = (B,W; E) be a bipartite Ps-saturated graph, |B| =
p, Wl =4q,p<q,p>2q>3, such that there is at least one isolated vertex
in W. Thenp=2k,k>1 and G = kKoo U Kq 4—p. In particular we have

1. p<q and
2. e(G) = 2p.

Lemma 9 is evidently true. Lemma 10 follows from Lemma 9 easily. [
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Lemma 11. Let G = (B,W; E) be a bipartite Ps-saturated graph without
isolated vertices |B| = p,|W| =¢q, p < ¢,p > 2,q > 3. Then G is vertex
disjoint union of

1. complete graphs K o,

2. non-trivial double stars,
3. non-trivial stars,
4

. at most one trivial star Ky 1.
If K11 is a component of G then no other star is a component of G.

Lemma 11 follows from Lemma 9. [ ]

If G = (B,W;E) is a bipartite Ps-saturated graph with |B| = p,|W| = ¢
then we have either

k l
(1) G = nKQ,Q U U Sgubi U U Kl,(:j U 5K171
i=1 j=1
k l
(2) G = TlK272 U U Sgiybi U U de71 U (5K171
i=1 j=1

where Sghbi are non-trivial double stars, K ., and K dj;,1 are non-trivial stars,
and § € {0,1}. We have p =2n + (Zle a; + k‘) +149,

q=12n+ (Zle b; + k) + Zé’:1 ¢j + 0 if G is given by (1), and

p=2n+ (Zleai+k:) + Y d+ q:2n+< lebﬂrk) LI+ G
is given by (2), and § = 0 if [ > 0.

Lemma 12. Let G = (B, W; E) be a union of non-trivial double stars, such
that |B| = p,|W| =4q, p<q,p>2,q> 3. Then G has the minimum size if

p+q-| if 3p<2g,

e(G) = . .
pea- 3o [ 7 s
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Proof. Let G be a union of non-trivial double stars, G = J\_, Sgi7bi where

Sip = (Bi Wi Ey),|Bil =a;i+ 1, [Wi| =bj+ 1i=1,...,1,

such that for fixed p and ¢, G has the minimum size e(G). We observe that
e(G) = p+q—c where ¢ = ¢(G) is the number of components of G. So, e(G)
is the minimum whenever ¢(G) is the maximum. Since every component of
G has at least two vertices in B then ¢(G) < [£]. If 3p < 2q, then ¢ = |£]
and ¢ components of G are S% p, stars with b; > 2,4 = 1,2,...,¢—1 and
a. = 1,b. > 2 if p is even, and ézc = 2,b. > 1 when p is odd.

Therefore e(G) = p+ ¢ — [ §] when 3p < 2¢. So we may assume from
now that 3p > 2q. Since the lemma is easy to verify for p < 4 we shall
assume p > 5. Observe that there are two different components C7 and Co
of G such that C7 = Sa21,b17 Cy = SgQ’bQ, b1 > 2 and ay > 2.

If p <6 or g <7then ¢(G) = 2 and the proof is finished. So we suppose
p > 7 and ¢ > 8. Then there is at least one component C', C # C1, C' # Cs.
Let x,y be the centers of C, x1,y; be the centers of C1, x2,ys be the centers
of (Y, such that x,z1,22 € B,y,y1,y2 € W. It is clear that the number of
components of G will not change if we proceed the following operation:

— delete from C] all but one black pendant vertices and all but two white
pendant vertices (we denote then by C] the obtained component),

— delete from C5 all but two black pendant vertices and all but one white
pendant vertices (we denote then by C% the obtained component),

— join x with all white vertices deleted from Cj and Cy and join y with
all black vertices deleted from C; and Cy (we denote then by C’ the
obtained component).

The new graph G’ has exactly the same number of components as G and all
the components of G’ are non-trivial double stars. The number of compo-
nents of G is equal to ¢ = 2t + [(252)] = [(25%)] where ¢ is the minimum
integer verifying 3(p — 5t) < 2(q — 5t),3p — 2¢ < 5t and by consequence
t= [(@ﬂ and Lemma 12 is proved. |

Lemma 13. Let p > 4 and let G = (B,W; E) be a bipartite Ps-saturated
graph such that |B| =p < q = |W|, K11 is a component of G and G has the
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mainimum size. Then
p+q—[EJ—2 if 3p—1<2g,

e(G) =
p+a—|3(p-1-[222) | -2 if 2q<3p-1.
Proof. By Lemma 11 each component of G is either complete graph K3 5 or
non-trivial double star Sib and exactly one component is isomorphic to K7 1.
The size of G is equal to e(G) = p+q—c—1 where ¢ is the number of double
stars. We have e(2Ky2) = 8 > e(S33) = 7 and e(Ka 2 U Sg’b) = 6(52+2’b+2).

So we may suppose that G has no components isomorphic to Ks>. The
lemma follows from Lemma 12. [

Proposition 14. Let G = (B, W} E) be a bipartite Ps-saturated graph such
that |B| = p < q = |W|,3 < p < q without isolated vertices and with the
minimum size. Then

q if 2p <gq,
e(G) = p+[%w if q<2p,2p—q#2,
p+[4]+1 if w-q=2

Proof. The proof starts with the observation that by Lemma 11 G is
a union of nkso and Sgi bt = 1,...,k and some stars such that there
is at most one Kj; and the remaining stars have their centers in exactly
one set of bipartition B or W. Now observe that if n > 2 then 522”,17%,1
is non-trivial double star which has less edges than nks> and the same
number of vertices. Thus there is at most one K5. But then there is at
least one component C' which is a star, or non-trivial double star. Then
Ks9 U C may be replaced with a double star S?hb with the same vertex
set and with the size e(Sib) = e(K22 UC). So we may suppose that no
component of G is isomorphic to Ks2. So G is a union of stars and double
stars. We may check easily that if G has more then one double star then
it is always possible to find a union of non-trivial stars and at most one
double non-trivial star with the same size. Moreover all the stars may have
their centers in a given set of bipartition. Hence we may suppose that
either G = U§:1K1,qi USib, k+a+1=p SF ¢i+b+1=qorG =
U§:1 Kp1US?,, l+b+1=gq, Zézl p;i +a+ 1 = p. Similarly we may
suppose that all non-trivial stars are isomorphic to Ko or Ko1 and we
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have 2k +b+1=¢q, k+a+1=pand 2l+a+1=p, [+b+1=gq. Now
the proof follows easily. [

Clearly, Lemma 10 and Proposition 14 imply Proposition 4.

Proposition 5 follows from Lemma 18 and Corollary 17 given below. Let
T;,i € {1,2} be the tree defined in Figure 7.

Lemma 15. Let G = (B, W; E) be a connected bipartite Ps-saturated graph.
Then either G contains one of graphs S35, Ty, i € {1,2} or G = K, with
min{r, s} < 2.

Proof. Let us denote |B| = p,|W| = ¢q and let p < ¢. For min{p,q} < 2
the lemma is evident. So let us suppose that p,q > 3. It is easily seen
that there exists at least one vertex z € V(G) such that dg(x) > 3. Let us
suppose that x € B. Denote by y;,7 = 1,2,...,n the neighbours of x. If
there is a neighbour y;,7 = 1,2,...,n such that dg(y;) > 3 then G contains
S%}Q. So we may suppose that dg(y;) < 2,7 = 1,2,...,n. Since p > 3 at

least two of y;,7 = 1,2,...,n have their degrees equal to 2 and therefore G
contains T7. m
O\ [ ]
a: ,_Q<: b
o/ o
Sg,b Ty T
Figure 7

Lemma 16. Let G = (B, W; E) be a bipartite Ps-saturated graph such that
3<|B|=p<q=|W|, p>3 and there is a vertex w € W which is isolated
in G. Then all the isolated vertices of G are in W and G = Jf_; K, 2 U

éle&l where a; > 3,1 =1,2,...,k, Zi-“:lai =p and q =2k + . [

Proof. The fact that all isolated vertices are in W is evident. Let B =
{b1,b2,...,bp}, W = {wy,wa,...,ws}. Denote by Ng(x) the set of the
neighbours of the vertex x € V(G). It is clear that for every b € B there is
a path Ps starting from b. It is easy to check that every w € Ng(b) belongs
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to any path Ps; starting from b. Thus dg(b) < 2. Denote by bjwibowabs
a path starting from b;. It follows easily that for every x € B such that
w; € Ng(x),i € {1,2} we have Ng(x) C {w;,ws}. Therefore the component
of G containing wy and wsy is isomorphic to K, 2,a > 3. [ |

Corollary 17 follows immediately from Lemma 16.

Corollary 17. Let G = (B,W; E) be a bipartite Ps-saturated graph such
that |B| = p and there is an isolated vertex in W. Then e(G) = 2p. |

Lemma 18. If G = (B,W; E) is a bipartite Ps-saturated graph without

isolated vertices and with the minimum size and 3 < |B| =p < q = |W|,
then

p—i—q—{%J if p=0(mod 3) or p=qg=1(mod 3),
e(G) = p—l—q—{gJ—l if p=1(mod 3) and p<gq or

p = 2(mod 3).

Proof. For every graph G we have e(G) > |V(G)| — ¢ where ¢ is a number
of components of G and equality holds if and only if G is a forest. The proof
follows by Lemma 15. [

Now, we turn to the case of m > 7.

Lemma 19. Let T = (B,W; E) be a P,,-saturated tree, m > 7, x € BUW,
with dp(x) > 1 and let x1,x9, . ..,k be the neighbors of x. Fori=1,2,...,k
denote by l; the mazimum number of vertices in a path starting from x and
containing x;,t = 1,2,... k11 > 1o > ... > lx. The following holds:

i) m—-1<lL+1l<m,i=23,

(ii) ifdr(v) = 2 then v is the neighbour of a pendant vertex (v is penultimate).

Proof. The inequality I; +1; < m for i > 1 is evident. Let 2%, 2%, ..., 3:}2 be
a path of order [; starting from = = 2% and containing x; = x%,i =1,2,...,k
(see Figure 8).

Suppose first that £ > 3 and z is not a penultimate. Then adding to T’
the edge z3x3 we create a path with m vertices. Thus Iy — 1 +2+13 > m
and therefore Iy +13 >m — 1. So ly + 13 > m — 1 and (i) is proved.
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Figure 8

Suppose that v € BUW and dp(v) = 2 and v is not penultimate vertex.
Denote by u1, v the neighbours of v, P = v, uq,...,us and P’ = v,vq,...,v,
the longest paths starting from v and passing by u1, vy, respectively. Then
r,s > 2. The edge ugv; create a P,, contradicting the maximality of P =
UV, ULy ey Use |

The Pr-saturated bipartite graphs with p = ¢ = 5.

Figure 9

The next lemma follows from Lemma 19.
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Lemma 20. Let a tree T = (B,W;E) be a P,,-saturated bipartite graph
m > 7. Then T contains An,. [

Proofs of Theorem 6 and 7. Like in the proof of Lemma 18 we use the
fact that for every graph G we have e(G) > |V(G)| — ¢ and equality holds if
and only if G is a forest with exacly ¢ components. Hence for given p, ¢ and
m, if there is a P,,-saturated forest F' = (B,W; E) with |B| = p,|W| = ¢
and the maximum number of components then F' is a P,,-saturated bipar-
tite graph with the minimum size. On the other hand it is clear that if
the assumptions of Theorem 6 or 7 are verified then there exists such a
forest F' that each component of F' contains A,,,m > 7 (see Figure 9 and
Figure 10). |

4 /(h\

The Pr-saturated graphs with p = 3, ¢ = 6.

Figure 10

Observe now that
—ifm=2k, k>4andp=q=1(3-2F3-1), or
—ifm=2k+1,k>3andp=1(4-2¥3 1), ¢ =1(5-2F3 - 1),

then the P,-saturated bipartite graph F' = (B, W; E) without isolated ver-
tices and with the minimum size and with |W| = ¢, |B| = p is the forest
containing [ trees A,,.
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