ArticleOriginal scientific text
Title
Generalised irredundance in graphs: Nordhaus-Gaddum bounds
Authors 1, 1
Affiliations
- University of Victoria, B.C., Canada V8W 3P4
Abstract
For each vertex s of the vertex subset S of a simple graph G, we define Boolean variables p = p(s,S), q = q(s,S) and r = r(s,S) which measure existence of three kinds of S-private neighbours (S-pns) of s. A 3-variable Boolean function f = f(p,q,r) may be considered as a compound existence property of S-pns. The subset S is called an f-set of G if f = 1 for all s ∈ S and the class of f-sets of G is denoted by . Only 64 Boolean functions f can produce different classes , special cases of which include the independent sets, irredundant sets, open irredundant sets and CO-irredundant sets of G. Let be the maximum cardinality of an f-set of G. For each of the 64 functions f, we establish sharp upper bounds for the sum and the product in terms of n, the order of G.
Keywords
graph, generalised irredundance, Nordhaus-Gaddum
Bibliography
- B. Bollobás and E.J. Cockayne, The irredundance number and maximum degree of a graph, Discrete Math. 69 (1984) 197-199.
- E.J. Cockayne, Generalized irredundance in graphs: hereditary properties and Ramsey numbers, J. Combin. Math. Combin. Comput. 31 (1999) 15-31.
- E.J. Cockayne, Nordhaus-Gaddum Results for Open Irredundance, J. Combin. Math. Combin. Comput., to appear.
- E.J. Cockayne, O. Favaron, P.J.P. Grobler, C.M. Mynhardt and J. Puech, Ramsey properties of generalised irredundant sets in graphs, Discrete Math. 231 (2001) 123-134, doi: 10.1016/S0012-365X(00)00311-3.
- E.J. Cockayne, O. Favaron, C.M. Mynhardt, Open irredundance and maximum degree in graphs (submitted).
- E.J. Cockayne, P.J.P. Grobler, S.T. Hedetniemi and A.A. McRae, What makes an irredundant set maximal? J. Combin. Math. Combin. Comput. 25 (1997) 213-223.
- E.J. Cockayne, S.T. Hedetniemi, D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978) 261-268, doi: 10.4153/CMB-1978-079-5.
- E.J. Cockayne, G. MacGillvray, J. Simmons, CO-irredundant Ramsey numbers for graphs, J. Graph Theory 34 (2000) 258-268, doi: 10.1002/1097-0118(200008)34:4<258::AID-JGT2>3.0.CO;2-4
- E.J. Cockayne, D. McCrea, C.M. Mynhardt, Nordhaus-Gaddum results for CO-irredundance in graphs, Discrete Math. 211 (2000) 209-215, doi: 10.1016/S0012-365X(99)00282-4.
- E.J. Cockayne and C.M. Mynhardt, Irredundance and maximum degree in graphs, Combin. Prob. Comput. 6 (1997) 153-157, doi: 10.1017/S0963548396002891.
- E.J. Cockayne, C.M. Mynhardt, On the product of upper irredundance numbers of a graphs and its complement, Discrete Math. 76 (1988) 117-121, doi: 10.1016/0012-365X(89)90304-X.
- E.J. Cockayne, C.M. Mynhardt, J. Simmons, The CO-irredundent Ramsey number t(4,7), Utilitas Math. 57 (2000) 193-209.
- A.M. Farley and A. Proskurowski, Computing the maximum order of an open irredundant set in a tree, Congr. Numer. 41 (1984) 219-228.
- A.M. Farley and N. Schacham, Senders in broadcast networks: open irredundancy in graphs, Congr. Numer. 38 (1983) 47-57.
- O. Favaron, A note on the open irredundance in a graph, Congr. Numer. 66 (1988) 316-318.
- O. Favaron, A note on the irredundance number after vertex deletion, Discrete Math. 121 (1993) 51-54, doi: 10.1016/0012-365X(93)90536-3.
- M.R. Fellows, G.H. Fricke, S.T. Hedetniemi and D. Jacobs, The private neighbour cube, SIAM J. Discrete Math. 7 (1994) 41-47, doi: 10.1137/S0895480191199026.
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
- S.T. Hedetniemi, D.P. Jacobs and R.C. Laskar, Inequalities involving the rank of a graph, J. Combin. Math. Combin. Comput. 6 (1989) 173-176.
- E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177, doi: 10.2307/2306658.
- J. Simmons, CO-irredundant Ramsey numbers for graphs (Master's Thesis, University of Victoria, 1998).