PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 24 | 1 | 125-135
Tytuł artykułu

A note on total colorings of planar graphs without 4-cycles

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let G be a 2-connected planar graph with maximum degree Δ such that G has no cycle of length from 4 to k, where k ≥ 4. Then the total chromatic number of G is Δ +1 if (Δ,k) ∈ {(7,4),(6,5),(5,7),(4,14)}.
Słowa kluczowe
Wydawca
Rocznik
Tom
24
Numer
1
Strony
125-135
Opis fizyczny
Daty
wydano
2004
otrzymano
2002-02-26
poprawiono
2003-10-21
Twórcy
autor
  • Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
  • School of Mathematics, Shandong University, Jinan, Shandong, 250100, P.R. China
Bibliografia
  • [1] J.A. Bondy and U.S.R. Murty (Graph Theory with Applications, North-Holland, 1976).
  • [2] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180.
  • [3] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory 26 (1997) 53-59, doi: 10.1002/(SICI)1097-0118(199709)26:1<53::AID-JGT6>3.0.CO;2-G
  • [4] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colourings of planar graphs with large girth, European J. Combin. 19 (1998) 19-24, doi: 10.1006/eujc.1997.0152.
  • [5] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigarphs, J. Combin. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780.
  • [6] J.L. Gross and T.W. Tucker (Topological Graph Theory, John and Wiley & Sons, 1987).
  • [7] A.J.W. Hilton, Recent results on the total chromatic number, Discrete Math. 111 (1993) 323-331, doi: 10.1016/0012-365X(93)90167-R.
  • [8] T.R. Jensen and B. Toft (Graph Coloring Problems, John Wiley & Sons, 1995).
  • [9] Peter C.B. Lam, B.G. Xu, and J.Z. Liu, The 4-choosability of plane graphs without 4-cycles, J. Combin. Theory (B) 76 (1999) 117-126, doi: 10.1006/jctb.1998.1893.
  • [10] A. Sanchez-Arroyo, Determining the total coloring number is NP-hard, Discrete Math. 78 (1989) 315-319, doi: 10.1016/0012-365X(89)90187-8.
  • [11] H.P. Yap, Total colourings of graphs, Lecture Notes in Mathematics 1623 (Springer, 1996).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1219
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.