ArticleOriginal scientific text

Title

Light classes of generalized stars in polyhedral maps on surfaces

Authors 1, 2

Affiliations

  1. Department of Geometry and Algebra, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
  2. Department of Algebra, Technical University Dresden, Mommsenstrasse 13, D-01062 Dresden, Germany

Abstract

A generalized s-star, s ≥ 1, is a tree with a root Z of degree s; all other vertices have degree ≤ 2. Si denotes a generalized 3-star, all three maximal paths starting in Z have exactly i+1 vertices (including Z). Let be a surface of Euler characteristic χ() ≤ 0, and m():= ⎣(5 + √{49-24χ( )})/2⎦. We prove: (1) Let k ≥ 1, d ≥ m() be integers. Each polyhedral map G on with a k-path (on k vertices) contains a k-path of maximum degree ≤ d in G or a generalized s-star T, s ≤ m(), on d + 2- m() vertices with root Z, where Z has degree ≤ k·m() and the maximum degree of T∖{Z} is ≤ d in G. Similar results are obtained for the plane and for large polyhedral maps on .. (2) Let k and i be integers with k ≥ 3, 1 ≤ i ≤ [k/2]. If a polyhedral map G on with a large enough number of vertices contains a k-path then G contains a k-path or a 3-star Si of maximum degree ≤ 4(k+i) in G. This bound is tight. Similar results hold for plane graphs.

Keywords

polyhedral maps, embeddings, light subgraphs, path, star, 2-dimensional manifolds, surface

Bibliography

  1. I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs and Combinatorics 13 (1997) 245-250.
  2. I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar graphs, Discrete Math. 191 (1998) 83-90, doi: 10.1016/S0012-365X(98)00095-8.
  3. B. Grünbaum, New views on some old questions of combinatorial geometry (Int. Theorie Combinatorie, Rome, 1973) 1 (1976) 451-468.
  4. B. Grünbaum and G.C. Shephard, Analogues for tiling of Kotzig's theorem on minimal weight of edges, Ann. Discrete Math. 12 (1982) 129-140.
  5. J. Harant, S. Jendrol' and M. Tkáč, On 3-connected plane graphs without trianglar faces, J. Combin. Theory (B) 77 (1999) 150-61, doi: 10.1006/jctb.1999.1918.
  6. J. Ivanco, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116.
  7. S. Jendrol', T. Madaras, R. Soták and Zs. Tuza, On light cycles in plane triangulations, Discrete Math. 197/198 (1999) 453-467.
  8. S. Jendrol' and H.-J. Voss, A local property of polyhedral maps on compact 2-dimensional manifolds, Discrete Math. 212 (2000) 111-120, doi: 10.1016/S0012-365X(99)00329-5.
  9. S. Jendrol' and H.-J. Voss, A local property of large polyhedral maps on compact 2-dimensional manifolds, Graphs and Combinatorics 15 (1999) 303-313, doi: 10.1007/s003730050064.
  10. S. Jendrol' and H.-J. Voss, Light paths with an odd number of vertices in large polyhedral maps, Annals of Combin. 2 (1998) 313-324, doi: 10.1007/BF01608528.
  11. S. Jendrol' and H.-J. Voss, Subgraphs with restricted degrees of their vertices in large polyhedral maps on compact 2-manifolds, European J. Combin. 20 (1999) 821-832, doi: 10.1006/eujc.1999.0341.
  12. S. Jendrol' and H.-J Voss, Light subgraphs of multigraphs on compact 2-dimensional manifolds, Discrete Math. 233 (2001) 329-351, doi: 10.1016/S0012-365X(00)00250-8.
  13. S. Jendrol' and H.-J. Voss, Subgraphs with restricted degrees of their vertices in polyhedral maps on compact 2-manifolds, Annals of Combin. 5 (2001) 211-226, doi: 10.1007/PL00001301.
  14. S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in 2-dimensional manifolds of Euler characteristic ≤ 0 - a survey, in: Paul Erdős and his Mathematics, II (Budapest, 1999) Bolyai Soc. Math. Stud., 11 (János Bolyai Math. Soc., Budapest, 2002) 375-411.
  15. A. Kotzig, Contribution to the theory of Eulerian polyhedra, Math. Cas. SAV (Math. Slovaca) 5 (1955) 111-113.
  16. T. Madaras, Note on weights of paths in polyhedral graphs, Discrete Math. 203 (1999) 267-269, doi: 10.1016/S0012-365X(99)00052-7.
  17. B. Mohar, Face-width of embedded graphs, Math. Slovaca 47 (1997) 35-63.
  18. G. Ringel, Map color Theorem (Springer-Verlag Berlin, 1974).
  19. N. Robertson and R. P. Vitray, Representativity of surface embeddings, in: B. Korte, L. Lovász, H.J. Prömel and A. Schrijver, eds., Paths, Flows and VLSI-Layout (Springer-Verlag, Berlin-New York, 1990) 293-328.
  20. H. Sachs, Einführung in die Theorie der endlichen Graphen, Teil II. (Teubner Leipzig, 1972).
  21. J. Zaks, Extending Kotzig's theorem, Israel J. Math. 45 (1983) 281-296, doi: 10.1007/BF02804013.
Pages:
85-107
Main language of publication
English
Received
2002-01-10
Accepted
2003-05-20
Published
2004
Exact and natural sciences