ArticleOriginal scientific text

Title

On the heterochromatic number of circulant digraphs

Authors 1, 1

Affiliations

  1. Instituto de Matemáticas, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D.F., MÉXICO

Abstract

The heterochromatic number hc(D) of a digraph D, is the minimum integer k such that for every partition of V(D) into k classes, there is a cyclic triangle whose three vertices belong to different classes. For any two integers s and n with 1 ≤ s ≤ n, let Dn,s be the oriented graph such that V(Dn,s) is the set of integers mod 2n+1 and A(Dn,s)={(i,j):j-i{1,2,...,n}{s}}..Inthispaperweprovet^hc(D_{n,s}) ≤ 5!$! for n ≥ 7. The bound is tight since equality holds when s ∈ {n,[(2n+1)/3]}.

Keywords

circulant tournament, vertex colouring, heterochromatic number, heterochromatic triangle

Bibliography

  1. C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
  2. B. Abrego, J.L. Arocha, S. Fernández Merchant and V. Neumann-Lara, Tightness problems in the plane, Discrete Math. 194 (1999) 1-11, doi: 10.1016/S0012-365X(98)00031-4.
  3. J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405.
  4. P. Erdős, M. Simonovits and V.T. Sós, Anti-Ramsey Theorems (in: Infinite and Finite Sets, Keszthely, Hungary, 1973), Colloquia Mathematica Societatis János Bolyai 10 633-643.
  5. H. Galeana-Sánchez and V. Neumann-Lara, A class of tight circulant tournaments, Discuss. Math. Graph Theory 20 (2000) 109-128, doi: 10.7151/dmgt.1111.
  6. Y. Manoussakis, M. Spyratos, Zs. Tuza, M. Voigt, Minimal colorings for properly colored subgraphs, Graphs and Combinatorics 12 (1996) 345-360, doi: 10.1007/BF01858468.
  7. V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197-198 (1999) 617-632.
Pages:
73-79
Main language of publication
English
Received
2001-06-29
Accepted
2003-05-13
Published
2004
Exact and natural sciences