ArticleOriginal scientific text

Title

Hamilton cycles in split graphs with large minimum degree

Authors 1, 2

Affiliations

  1. Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam
  2. Provincial Office of Education and Training, Tuyen Quang, Vietnam

Abstract

A graph G is called a split graph if the vertex-set V of G can be partitioned into two subsets V₁ and V₂ such that the subgraphs of G induced by V₁ and V₂ are empty and complete, respectively. In this paper, we characterize hamiltonian graphs in the class of split graphs with minimum degree δ at least |V₁| - 2.

Keywords

Hamilton cycle, split graph, bipartite graph

Bibliography

  1. M. Behzad and G. Chartrand, Introduction to the theory of graphs (Allyn and Bacon, Boston, 1971).
  2. R.E. Burkard and P.L. Hammer, A note on hamiltonian split graphs, J. Combin. Theory 28 (1980) 245-248, doi: 10.1016/0095-8956(80)90069-6.
  3. V. Chvatal, New directions in hamiltonian graph theory, in: New directions in the theory of graphs (Proc. Third Ann Arbor Conf. Graph Theory, Univ. Michigan, Ann Arbor, Mich., 1971), pp. 65-95, Acad. Press, NY 1973.
  4. V. Chvatal and P. Erdős, A note on hamiltonian circiuts, Discrete Math. 2 (1972) 111-113, doi: 10.1016/0012-365X(72)90079-9.
  5. V. Chvatal and P.L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math. 1 (1977) 145-162, doi: 10.1016/S0167-5060(08)70731-3.
  6. S. Foldes, P.L. Hammer, Split graphs, in: Proceedings of the Eighth Southeastern conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), 311-315. Congressus Numerantium, No XIX, Utilitas Math., Winnipeg, Man., 1977.
  7. S. Foldes and P.L. Hammer, On a class of matroid-producing graphs, in: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely 1976) Vol. 1, 331-352, Colloq. Math. Soc. Janós Bolyai, 18 (North-Holland, Amsterdam-New York, 1978).
  8. R.J. Gould, Updating the hamiltonian problem, a survey, J. Graph Theory 15 (1991) 121-157, doi: 10.1002/jgt.3190150204.
  9. P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26.
  10. F. Harary and U. Peled, Hamiltonian threshold graphs, Discrete Appl. Math. 16 (1987) 11-15, doi: 10.1016/0166-218X(87)90050-3.
  11. B. Jackson and O. Ordaz, Chvatal-Erdős conditions for paths and cycles in graphs and digraphs, a survey, Discrete Math. 84 (1990) 241-254, doi: 10.1016/0012-365X(90)90130-A.
  12. J. Peemöller, Necessary conditions for hamiltonian split graphs, Discrete Math. 54 (1985) 39-47.
  13. U.N. Peled, Regular Boolean functions and their polytope, Chapter VI (Ph. D. Thesis, Univ. of Waterloo, Dep. Combin. and Optimization, 1975).
  14. S.B. Rao, Solution of the hamiltonian problem for self-complementary graphs, J. Combin. Theory (B) 27 (1979) 13-41, doi: 10.1016/0095-8956(79)90065-0.
Pages:
23-40
Main language of publication
English
Received
2001-02-13
Accepted
2002-10-02
Published
2004
Exact and natural sciences