ArticleOriginal scientific text

Title

On a special case of Hadwiger's conjecture

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240, USA
  2. Institute of Mathematics, TU Ilmenau, D-98684 Ilmenau, Germany
  3. Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Abstract

Hadwiger's Conjecture seems difficult to attack, even in the very special case of graphs G of independence number α(G) = 2. We present some results in this special case.

Keywords

Hadwiger's Conjecture, complete minor, independence number, connected matching

Bibliography

  1. C. Berge, Alternating chain methods: a survey, in: Graph Theory and Computing, ed., R. Read (Academic Press, New York, 1972) 1-13.
  2. S. Brandt, On the structure of dense triangle-free graphs, Combin. Prob. Comput. 8 (1999) 237-245, doi: 10.1017/S0963548399003831.
  3. S. Brandt and T. Pisanski, Another infinite sequence of dense triangle-free graphs, Elect. J. Combin. 5 (1998) #R43 1-5.
  4. P.A. Catlin, Hajós' graph-coloring conjecture: variations and counterexamples, J. Combin. Theory (B) 26 (1979) 268-274, doi: 10.1016/0095-8956(79)90062-5.
  5. G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.
  6. G.A. Dirac, Trennende Knotenpunktmengen und Reduzibilität abstrakter Graphen mit Anwendung auf das Vierfarbenproblem, J. Reine Angew. Math. 204 (1960) 116-131, doi: 10.1515/crll.1960.204.116.
  7. P. Duchet and H. Meyniel, On Hadwiger's number and the stability number, Ann. Discrete Math. 13 (1982), 71-74.
  8. T. Gallai, Kritische Graphen II, Publ. Math. Inst. Hung. Acad. 8 (1963) 373-395.
  9. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, San Francisco, 1979).
  10. H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahrsschrift der Naturf. Gesellschaft in Zürich 88 (1943) 133-142.
  11. J.H. Kim, The Ramsey number R(3,t) has order of magnitude t²/log t, Random Struct. Algorithms 7 (1995) 173-207, doi: 10.1002/rsa.3240070302.
  12. U. Krusenstjerna-Hafstrø m and B. Toft, Some remarks on Hadwiger's Conjecture and its relation to a conjecture of Lovász, in: The Theory and Applications of Graphs: Proceedings of the Fourth International Graph Theory Conference, Kalamazoo, 1980, eds., G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Leśniak-Foster and D.R. Lick (John Wiley and Sons, 1981) 449-459.
  13. L. Lovász and M.D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest and Ann. Discrete Math. 29 (North-Holland, Amsterdam, 1986) 448.
  14. W. Mader, Über trennende Eckenmengen in homomorphiekritischen Graphen, Math. Ann. 175 (1968) 243-252, doi: 10.1007/BF02052726.
  15. J. Pach, Graphs whose every independent set has a common neighbor, Discrete Math. 37 (1981) 217-228, doi: 10.1016/0012-365X(81)90221-1.
  16. N. Robertson, P.D. Seymour and R. Thomas, Hadwiger's conjecture for K₆-free graphs, Combinatorica 13 (1993) 279-362, doi: 10.1007/BF01202354.
  17. B. Toft, On separating sets of edges in contraction-critical graphs, Math. Ann. 196 (1972) 129-147, doi: 10.1007/BF01419610.
  18. B. Toft, A survey of Hadwiger's Conjecture, Congr. Numer. 115 (1996) 249-283.
Pages:
333-363
Main language of publication
English
Received
2001-09-29
Accepted
2002-05-13
Published
2003
Exact and natural sciences