Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 23 | 2 | 261-272

Tytuł artykułu

Improving some bounds for dominating Cartesian products

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The study of domination in Cartesian products has received its main motivation from attempts to settle a conjecture made by V.G. Vizing in 1968. He conjectured that γ(G)γ(H) is a lower bound for the domination number of the Cartesian product of any two graphs G and H. Most of the progress on settling this conjecture has been limited to verifying the conjectured lower bound if one of the graphs has a certain structural property. In addition, a number of authors have established bounds for dominating the Cartesian product of any two graphs. We show how it is possible to improve some of these bounds by imposing conditions on both graphs. For example, we establish a new lower bound for the domination number of T T, when T is a tree, and we improve an upper bound of Vizing in the case when one of the graphs has k > 1 dominating sets which cover the vertex set and the other has a dominating set which partitions in a certain way.

Wydawca

Rocznik

Tom

23

Numer

2

Strony

261-272

Opis fizyczny

Daty

wydano
2003
otrzymano
2001-10-01
poprawiono
2002-01-20

Twórcy

  • Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
  • Furman University, Greenville, SC 29613, USA

Bibliografia

  • [1] A.M. Barcalkin and L.F. German, The external stability number of the Cartesian product of graphs, Bul. Akad. Stiince RSS Moldoven. 1 (1979) 5-8.
  • [2] W.E. Clark and S. Suen, An inequality related to Vizing's conjecture, Elec. J. Combin. 7 (#N4) (2000) 1-3.
  • [3] M. El-Zahar and C.M. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991) 223-227.
  • [4] B.L. Hartnell, On determining the 2-packing and domination numbers of the Cartesian product of certain graphs, Ars Combin. 55 (2000) 25-31.
  • [5] B.L. Hartnell and D.F. Rall, On Vizing's conjecture, Congr. Numer. 82 (1991) 87-96.
  • [6] B.L. Hartnell and D.F. Rall, Chapter 7: Domination in Cartesian products: Vizing's conjecture, in: T.W. Haynes, S.T. Hedetniemi and P.J. Slater, eds, Domination in Graphs: Advanced Topics, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 209 (Marcel Dekker, Inc., New York, 1998).
  • [7] B.L. Hartnell and D.F. Rall, Lower bounds for dominating Cartesian products, J. Combin. Math. Combin. Comp. 31 (1999) 219-226.
  • [8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 208 (Marcel Dekker, Inc., New York, 1998).
  • [9] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079.
  • [10] M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs: I, Ars Combin. 18 (1983) 33-44.
  • [11] M.S. Jacobson and L.F. Kinch, On the domination of the products of graphs II: trees, J. Graph Theory 10 (1986) 97-106, doi: 10.1002/jgt.3190100112.
  • [12] V.G. Vizing, The Cartesian product of graphs, Vy cisl. Sistemy 9 (1963) 30-43.
  • [13] V.G. Vizing, Some unsolved problems in graph theory, Uspehi Mat. Nauk 23 (6) (1968) 117-134.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1201
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.