PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 23 | 1 | 189-199
Tytuł artykułu

On non-z(mod k) dominating sets

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a graph G, a positive integer k, k ≥ 2, and a non-negative integer with z < k and z ≠ 1, a subset D of the vertex set V(G) is said to be a non-z (mod k) dominating set if D is a dominating set and for all x ∈ V(G), |N[x]∩D| ≢ z (mod k).For the case k = 2 and z = 0, it has been shown that these sets exist for all graphs. The problem for k ≥ 3 is unknown (the existence for even values of k and z = 0 follows from the k = 2 case.) It is the purpose of this paper to show that for k ≥ 3 and with z < k and z ≠ 1, that a non-z(mod k) dominating set exist for all trees. Also, it will be shown that for k ≥ 4, z ≥ 1, 2 or 3 that any unicyclic graph contains a non-z(mod k) dominating set. We also give a few special cases of other families of graphs for which these dominating sets must exist.
Słowa kluczowe
Wydawca
Rocznik
Tom
23
Numer
1
Strony
189-199
Opis fizyczny
Daty
wydano
2003
otrzymano
2001-11-26
poprawiono
2002-02-26
Twórcy
autor
  • Department of Mathematics, University of Haifa - Oranim, Tivon - 36006, ISRAEL
  • Department of Mathematics, University of Louisville, Louisville, KY 40292, USA
Bibliografia
  • [1] A. Amin and P. Slater, Neighborhood Domination with Parity Restriction in Graphs, Congr. Numer. 91 (1992) 19-30.
  • [2] A. Amin and P. Slater, All Parity Realizable Trees, J. Combin. Math. Combin. Comput. 20 (1996) 53-63.
  • [3] Y. Caro, Simple Proofs to Three Parity Theorems, Ars Combin. 42 (1996) 175-180.
  • [4] Y. Caro and W.F. Klostermeyer, The odd domination number of a graph, to appear in J. Combin. Math. Combin. Comput.
  • [5] Y. Caro, J. Goldwasser and W. Klostermeyer, Odd and Residue Domination Numbers of a Graph, Discuss. Math. Graph Theory 21 (2001) 119-136, doi: 10.7151/dmgt.1137.
  • [6] J. Goldwasser and W. Klostermeyer, Maximization Versions of Lights Out Games in Grids and Graphs, Congr. Numer. 126 (1997) 99-111.
  • [7] K. Sutner, Linear Cellular Automata and the Garden-of-Eden, Mathematical Intelligencer 11 (2) (1989) 49-53.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1195
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.