PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 23 | 1 | 23-36
Tytuł artykułu

2-placement of (p,q)-trees

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let G = (L,R;E) be a bipartite graph such that V(G) = L∪R, |L| = p and |R| = q. G is called (p,q)-tree if G is connected and |E(G)| = p+q-1.
Let G = (L,R;E) and H = (L',R';E') be two (p,q)-tree. A bijection f:L ∪ R → L' ∪ R' is said to be a biplacement of G and H if f(L) = L' and f(x)f(y) ∉ E' for every edge xy of G. A biplacement of G and its copy is called 2-placement of G. A bipartite graph G is 2-placeable if G has a 2-placement. In this paper we give all (p,q)-trees which are not 2-placeable.
Słowa kluczowe
Kategorie tematyczne
Wydawca
Rocznik
Tom
23
Numer
1
Strony
23-36
Opis fizyczny
Daty
wydano
2003
otrzymano
2000-12-19
poprawiono
2002-03-07
Twórcy
autor
  • University of Mining and Metallurgy, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
  • [2] R.J. Faudree, C.C. Rousseau, R.H. Schelp and S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31 (106) (1981) 53-62.
  • [3] J.-L. Fouquet and A.P. Wojda, Mutual placement of bipartite graphs, Discrete Math. 121 (1993) 85-92, doi: 10.1016/0012-365X(93)90540-A.
  • [4] M. Makheo, J.-F. Saclé and M. Woźniak, Edge-disjoint placement of three trees, European J. Combin. 17 (1996) 543-563, doi: 10.1006/eujc.1996.0047.
  • [5] B. Orchel, Placing bipartite graph of small size I, Folia Scientiarum Universitatis Technicae Resoviensis 118 (1993) 51-58.
  • [6] H. Wang and N. Saver, Packing three copies of a tree into a complete graph, European J. Combin. 14 (1993) 137-142.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1183
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.