ArticleOriginal scientific text

Title

Balanced problems on graphs with categorization of edges

Authors 1, 2

Affiliations

  1. Air Force Academy of M.R. Štefánik, Košice, Rampová 7, 041 21 Košice, Slovakia
  2. Institute of Mathematics, University of P.J. Šafárik, Košice, Jesenná 5, 041 54 Košice, Slovakia

Abstract

Suppose a graph G = (V,E) with edge weights w(e) and edges partitioned into disjoint categories S₁,...,Sₚ is given. We consider optimization problems on G defined by a family of feasible sets (G) and the following objective function: L(D)=max1ip(maxeSiDw(e)-mineSiDw(e)) For an arbitrary number of categories we show that the L₅-perfect matching, L₅-a-b path, L₅-spanning tree problems and L₅-Hamilton cycle (on a Halin graph) problem are NP-complete. We also summarize polynomiality results concerning above objective functions for arbitrary and for fixed number of categories.

Keywords

algorithms on graphs, categorization of edges, NP-completeness

Bibliography

  1. I. Averbakh and O. Berman, Categorized bottleneck-minisum path problems on networks, Oper. Res. Letters 16 (1994) 291-297, doi: 10.1016/0167-6377(94)90043-4.
  2. S. Berezný, K. Cechlárová and V. Lacko, Optimization problems on graphs with categorization of edges, in: Proc. SOR 2001, eds. V. Rupnik, L. Zadnik-stirn, S. Drobne (Preddvor, Slovenia, 2001) 171-176.
  3. S. Berezný, K. Cechlárová and V. Lacko, A polynomially solvable case of optimization problems on graphs with categorization of edges, in: Proc. of MME'1999 (Jindrichúv Hradec, 1999) 25-31.
  4. S. Berezný and V. Lacko, Special problems on graphs with categorization, in: Proc. of MME'2000 (Praha, 2000) 7-13.
  5. S. Berezný and V. Lacko, Easy (polynomial) problems on graphs with categorization, in: Proc. of New trends of aviation development (Air Force Academy of gen. M.R. Stefánik, Košice, 2000) 36-46.
  6. G. Cornuéjols, D. Naddef and W.R. Pulleyblank, Halin graphs and the Travelling salesman problem, Mathematical Programming 26 (1983) 287-294, doi: 10.1007/BF02591867.
  7. C.W. Duin and A. Volgenant, Minimum deviation and balanced optimization: A unified aproach, Operation Research Letters 10 (1991) 43-48, doi: 10.1016/0167-6377(91)90085-4.
  8. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness (Freeman, New York, 1979).
  9. M. Gavalec and O. Hudec, Balanced Location on a Graph, Optimization, 35 (1995) 367-372, doi: 10.1080/02331939508844156.
  10. V. Lacko, Persistency in Traveling Salesman Problem on Halin graphs, Discuss. Math. Graph Theory 20 (2000) 231-242, doi: 10.7151/dmgt.1122.
  11. S. Martello, W.R. Pulleyblank, P. Toth and D. de Werra, Balanced optimization problems, Oper. Res. Lett. 3 (1984) 275-278, doi: 10.1016/0167-6377(84)90061-0.
  12. A.P. Punnen, Traveling salesman problem under categorization, Oper. Res. Lett. 12 (1992) 89-95, doi: 10.1016/0167-6377(92)90069-F.
  13. M.B. Richey and A.P. Punnen, Minimum weight perfect bipartite matchings and spanning trees under categorizations, Discrete Appl. Math. 39 (1992) 147-153.
Pages:
5-21
Main language of publication
English
Received
2000-12-18
Accepted
2002-05-06
Published
2003
Exact and natural sciences