Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 22 | 2 | 293-303

Tytuł artykułu

On the structural result on normal plane maps

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We prove the structural result on normal plane maps, which applies to the vertex distance colouring of plane maps. The vertex distance-t chromatic number of a plane graph G with maximum degree Δ(G) ≤ D, D ≥ 12 is proved to be upper bounded by $6 + [(2D+12)/(D-2)]((D-1)^{(t-1)} - 1)$. This improves a recent bound $6 + [(3D+3)/(D-2)]((D-1)^{t-1}-1)$, D ≥ 8 by Jendrol' and Skupień, and the upper bound for distance-2 chromatic number.

Słowa kluczowe

Wydawca

Rocznik

Tom

22

Numer

2

Strony

293-303

Daty

wydano
2002
otrzymano
2001-04-24
poprawiono
2002-03-23

Twórcy

  • Department of Geometry and Algebra, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovak Republic
  • Department of Geometry and Algebra, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovak Republic

Bibliografia

  • [1] P. Baldi, On a generalized family of colourings, Graphs and Combinatorics 6 (1990) 95-110, doi: 10.1007/BF01787722.
  • [2] O. Borodin, Joint generalization of theorems by Lebesgue and Kotzig, Diskret. Mat. 3 (1991) 24-27 (in Russian).
  • [3] O. Borodin, Joint colouring of vertices, edges and faces of plane graphs, Metody Diskret. Analiza 47 (1988) 27-37 (in Russian).
  • [4] M. Fellows, P. Hell and K. Seyffarth, Constructions of dense planar networks, manuscript, 1993.
  • [5] S. Jendrol' and Z. Skupień, On the vertex/edge distance colourings of planar graphs, Discrete Math. 236 (2001) 167-177.
  • [6] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. Cas. SAV 5 (1955) 233-237 (in Slovak).
  • [7] F. Kramer and H. Kramer, Un problème de coloration des sommets d'un graphe, C.R. Acad. Sci. Paris Sér. A-B 268 (1969) A46-A48.
  • [8] F. Kramer and H. Kramer, On the generalized chromatic number, in: Combinatorics '84 (Bari, Italy) North-Holland Math. Stud. 123 (North-Holland, Amsterdam-New York, 1986) (and Annals Discrete Math. 30, 1986) 275-284.
  • [9] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. (9) 19 (1940) 27-43.
  • [10] Z. Skupień, Some maximum multigraphs and edge/vertex distance colourings, Discuss. Math. Graph Theory 15 (1995) 89-106, doi: 10.7151/dmgt.1010.
  • [11] J. van den Heuvel and S. McGuinness, Colouring the Square of a Planar Graph, preprint, 2001.
  • [12] G. Wegner, Graphs with given diameter and a coloring problem (Technical report, University of Dortmund, 1977).

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1176