GENERALIZED CHROMATIC NUMBERS AND ADDITIVE HEREDITARY PROPERTIES OF GRAPHS

IZAK BROERE, SAMANTHA DORFLING AND ELIZABETH JONCK

Department of Mathematics
Faculty of Science
Rand Afrikaans University
P.O. Box 524, Auckland Park, South Africa

e-mail: ib@na.rau.ac.za

e-mail: dorflis@sci.uovs.ac.za

Abstract

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let \mathcal{P} and \mathcal{Q} be additive hereditary properties of graphs. The generalized chromatic number $\chi_{\mathcal{Q}}(\mathcal{P})$ is defined as follows: $\chi_{\mathcal{Q}}(\mathcal{P}) = n$ iff $\mathcal{P} \subseteq \mathcal{Q}^n$ but $\mathcal{P} \nsubseteq \mathcal{Q}^{n-1}$. We investigate the generalized chromatic numbers of the well-known properties of graphs I_k, O_k, W_k, S_k and D_k.

Keywords: property of graphs, additive, hereditary, generalized chromatic number.

2000 Mathematics Subject Classification: 05C15.

1. Introduction

Following [1] we denote the class of all finite simple graphs by \mathcal{I}. A property of graphs is a non-empty isomorphism-closed subclass of \mathcal{I}. A property \mathcal{P} is called hereditary if $G \in \mathcal{P}$ and $H \subseteq G$ implies $H \in \mathcal{P}$; \mathcal{P} is called additive if $G \cup H \in \mathcal{P}$ whenever $G \in \mathcal{P}$ and $H \in \mathcal{P}$.

Throughout the text we will call a component of a graph that is a spanning supergraph of a path P_k of order k a k-component. Let G be a graph and $V_1 \subseteq V(G)$. We say that a vertex $v \in V(G) - V_1$ is adjacent to a k-component of $G[V_1]$ if v is adjacent to a vertex of some k-component of $G[V_1]$.

Example. For a positive integer k we define the following well-known properties:

\[\mathcal{O} = \{ G \in \mathcal{I} : E(G) = \emptyset \}, \]
\[\mathcal{I}_k = \{ G \in \mathcal{I} : G \text{ does not contain } K_{k+2} \}, \]
\[\mathcal{O}_k = \{ G \in \mathcal{I} : \text{each component of } G \text{ has at most } k + 1 \text{ vertices} \}, \]
\[\mathcal{W}_k = \{ G \in \mathcal{I} : \text{each path in } G \text{ has at most } k + 1 \text{ vertices} \}, \]
\[\mathcal{S}_k = \{ G \in \mathcal{I} : \text{the maximum degree of } G \text{ is at most } k \}, \]
\[\mathcal{T}_k = \{ G \in \mathcal{I} : G \text{ contains no subgraph homeomorphic to } K_{k+2} \text{ or } K_{\lceil \frac{k+3}{2} \rceil, \lfloor \frac{k+3}{2} \rfloor} \}, \]
\[\mathcal{D}_k = \{ G \in \mathcal{I} : G \text{ is } k\text{-degenerate, i.e., every subgraph of } G \text{ has a vertex of degree at most } k \}. \]

For every additive hereditary property $\mathcal{P} \neq \mathcal{I}$ there is a smallest integer $c(\mathcal{P})$ such that $K_{c(\mathcal{P})+1} \in \mathcal{P}$ but $K_{c(\mathcal{P})+2} \not\in \mathcal{P}$, called the completion of \mathcal{P}. Note that all the properties in the above example, except \mathcal{O}, are of completeness k. The set $\mathbf{F}(\mathcal{P})$ of minimal forbidden subgraphs is defined by

\[\{ G \in \mathcal{I} : G \in \mathcal{P} \text{ and } H \in \mathcal{P} \text{ for all } H \subset G \}. \]

Let $\mathcal{Q}_1, \mathcal{Q}_2, \ldots, \mathcal{Q}_n$ be arbitrary hereditary properties of graphs. A vertex $(\mathcal{Q}_1, \mathcal{Q}_2, \ldots, \mathcal{Q}_n)$-partition of a graph G is a partition $\{ V_1, V_2, \ldots, V_n \}$ of $V(G)$ such that for each $i = 1, 2, \ldots, n$ the induced subgraph $G[V_i]$ has the property \mathcal{Q}_i. The property $\mathcal{R} = \mathcal{Q}_1 \circ \mathcal{Q}_2 \circ \cdots \circ \mathcal{Q}_n$ is defined as the set of all graphs having a vertex $(\mathcal{Q}_1, \mathcal{Q}_2, \ldots, \mathcal{Q}_n)$-partition. It is easy to see that if $\mathcal{Q}_1, \mathcal{Q}_2, \ldots, \mathcal{Q}_n$ are additive and hereditary, then $\mathcal{R} = \mathcal{Q}_1 \circ \mathcal{Q}_2 \circ \cdots \circ \mathcal{Q}_n$ is additive and hereditary too. If $\mathcal{Q}_1 = \mathcal{Q}_2 = \cdots = \mathcal{Q}_n = \mathcal{Q}$, then we write $\mathcal{Q}^n = \mathcal{Q}_1 \circ \mathcal{Q}_2 \circ \cdots \circ \mathcal{Q}_n$.

The generalized chromatic number $\chi_{\mathcal{Q}}(\mathcal{P})$ is defined as follows: $\chi_{\mathcal{Q}}(\mathcal{P}) = n$ iff $\mathcal{P} \subseteq \mathcal{Q}^n$ but $\mathcal{P} \not\subseteq \mathcal{Q}^{n-1}$.

As an example of the non-existence of $\chi_{\mathcal{Q}}(\mathcal{P})$ we have $\chi_{\mathcal{O}}(\mathcal{I}_1)$ since it is well known that there exist triangle-free graphs of arbitrary chromatic number. The following theorem, due to J. Nešetřil and V. Rödl (see [12]), implies that for some additive hereditary properties \mathcal{P} we have that $\chi_{\mathcal{Q}}(\mathcal{P})$ exists if and only if $\chi_{\mathcal{Q}}(\mathcal{P}) = 1$. In particular, $\chi_{\mathcal{O}}(\mathcal{I}_k)$ exists if and only $\chi_{\mathcal{O}}(\mathcal{I}_k) = 1$.

Theorem 1.1 [12]. Let $\mathbf{F}(\mathcal{P})$ be a finite set of 2-connected graphs. Then for every graph $G \in \mathcal{P}$ there exists a graph $H \in \mathcal{P}$ such that for any partition $\{ V_1, V_2 \}$ of $V(H)$ there is an i, $i = 1$ or $i = 2$, for which $G \leq H[V_i]$. \blacksquare
Corollary 1.2. If $F(P)$ is a finite set of 2-connected graphs, then for any additive hereditary property Q it follows that $\chi_Q(P)$ exists if and only if $P \subseteq Q$. ■

The value of $\chi_Q(P)$ is known for various choices of P and Q. In the remainder of this section we mention some simple results, most of which are known or follow immediately from well-known results. See for example [2] and [5].

It is easy to see that $O_{a+b+1} \subseteq O_a \circ O_b$ and $D_{a+b+1} \subseteq D_a \circ D_b$ (see for example [9]), which implies that $\chi_Q(O_k) = \left\lceil \frac{k+1}{n+1} \right\rceil$ for any property Q of completeness n, and $\chi_D_n(P) = \left\lceil \frac{k+1}{n+1} \right\rceil$ for any property P such that $O_k \subseteq P \subseteq D_k$. Note that Corollary 1.2 implies that the latter equality does not extend to $c(P) = n$.

The well-known theorem of Lovász states:

Theorem 1.3 [10]. $S_{a+b+1} \subseteq S_a \circ S_b$ for all $a, b \geq 0$. ■

This implies that $\chi_{S_n}(S_k) = \left\lceil \frac{k+1}{n+1} \right\rceil$. (See [5].)

It is also easy to see that if $O_k \subseteq P \subseteq O^{k+1}$, then $\chi_{I_n}(P) = \left\lceil \frac{k+1}{n+1} \right\rceil$.

The next result is interesting since it shows that the value of $\chi_{S_n}(D_k)$ is independent of n.

Theorem 1.4. For all k and n we have $\chi_{S_n}(D_k) = k + 1$.

Proof. Since $D_k \subseteq O^{k+1} \subseteq S_n^{k+1}$ we have the upper bound. We prove the lower bound by induction on k. The result is true for $k = 1$ since $D_1 \not\subseteq S_n$.

Assume, therefore, that $D_k \not\subseteq S_n$ and let $H \in D_k$ such that $H \not\subseteq S_n^k$. Let $G = (n+1)H + K_1$. Since every subgraph of $(n+1)H$ has a vertex of degree at most k, every subgraph of G has a vertex of degree at most $k+1$. Thus $G \in D_{k+1}$.

Also, $G \not\subseteq S_n^{k+1}$: Suppose, to the contrary, that $\{V_1, V_2, \ldots, V_{k+1}\}$ is an S_n^{k+1}-partition of $V(G)$. Let v be the universal vertex of G and suppose, without loss of generality, that $v \in V_1$. Since $G[V_1] \in S_n$ it follows that $|V_1| \leq n + 1$. Since there are $n + 1$ copies of H in G we have that for some copy F of H, $F \cap V_1 = \emptyset$. This contradicts the fact that $H \not\subseteq S_n^k$. ■

The lattice of (additive) hereditary properties is discussed in [1] — we use the supremum and infimum of properties in our next result without further discussion.
Theorem 1.5. Let P_1, P_2 and Q be additive hereditary properties such that \(\chi_Q(P_1)\) and \(\chi_Q(P_2)\) are finite. The following hold:

(i) \(\chi_Q(P_1 \cup P_2) = \chi_Q(P_1 \lor P_2) = \max\{\chi_Q(P_1), \chi_Q(P_2)\}\).

(ii) \(\chi_Q(P_1 \cap P_2) \leq \min\{\chi_Q(P_1), \chi_Q(P_2)\}\).

(iii) \(\max\{\chi_Q(P_1), \chi_Q(P_2)\} \leq \chi_Q(P_1 \circ P_2) \leq \chi_Q(P_1) + \chi_Q(P_2)\).

We remark that the inequality in Theorem 1.5(ii) may be strict. For example \(\chi_O(T_3) = 4\) and \(\chi_O(I_1)\) is infinite but \(\chi_O(T_3 \cap I_1) = 3\). (See [2].)

2. Results on \(W_k\)

In this section we investigate the value of \(\chi_{W_n}(W_k)\). The problem of determining it has been discussed in (or is related to problems in) several papers (see for example [3], [4], [6], [7], [8] and [11]) and the following conjecture has been made in at least three of them:

Conjecture 2.1 [3], [6], [7]. \(W_{a+b+1} \subseteq W_a \circ W_b\) for all positive integers \(a\) and \(b\).

This conjecture implies the following for \(\chi_{W_n}(W_k)\):

Conjecture 2.2. For every \(n, k \geq 1\), the following holds:

\[\chi_{W_n}(W_k) = \left\lceil \frac{k + 1}{n + 1} \right\rceil.\]

In [6] the bound \(\chi_{W_n}(W_k) \leq \left\lfloor \frac{k-n+1}{2} \right\rfloor + 2\) is proved. The following theorem will enable us to improve on this bound.

Theorem 2.3. \(W_{\left\lfloor \frac{a+b}{2} \right\rfloor + b+1} \subseteq W_a \circ W_b\) for all \(a \geq 15\) and \(b \geq 1\).

Proof. Consider any graph \(G\) in \(W_{\left\lfloor \frac{a+b}{2} \right\rfloor + b+1}\). Take \(V_1\) to be a maximal subset of \(V(G)\) such that \(G[V_1]\) is in \(W_a\). Let \(V_2 = V(G) - V_1\). Suppose that there is a path \(P\) in \(G[V_2]\) of length \(b+1\) and let \(v_1\) and \(v_2\) denote the end-vertices of \(P\). Since \(V_1\) is maximal in \(W_a\) it follows that there is a path \(P_1\) of length \(a+1\) in \(G[V_1 \cup \{v_1\}]\) and a path \(P_2\) of length \(a+1\) in \(G[V_1 \cup \{v_2\}]\). Note that if either \(v_1\) or \(v_2\) is an end-vertex of \(P_1\) or \(P_2\) respectively, then in both cases we get a path of length at least \(a+b+3\).
in G, a contradiction. Therefore the vertices v_1 and v_2 are not end-vertices of their respective paths. Let P_{11} and P_{12} denote the paths on either side of v_1 such that $P_{11} \cup \{v_1\} \cup P_{12} = P_1$. Similarly, let $P_{21} \cup \{v_2\} \cup P_{22} = P_2$. Now suppose, without loss of generality, that $x = |E(P_{11})| + 1 \leq y = |E(P_{12})| + 1$, so that $x + y = a + 1$.

It is easily seen that if $y \geq \lceil \frac{2a+2}{3} \rceil + 1$, then by simply taking the path $P_{12} \cup P$, we get a path of length at least $\lceil \frac{2a+2}{3} \rceil + 1 + b + 1 \geq \frac{2a+2}{3} + b + 2 \geq \left\lfloor \frac{3a}{2} \right\rfloor + b + 1$ in G, a contradiction. Therefore $\lceil \frac{a+1}{2} \rceil \leq y \leq \lceil \frac{2a+2}{3} \rceil$. Moreover, each P_{ij}, $i, j \in \{1, 2\}$ has length at least $\left\lceil \frac{a-5}{3} \right\rceil$, since $x = a + 1 - y \geq a - \left\lceil \frac{2a+2}{3} \right\rceil + 1 \geq a - \frac{2a+5}{3} = \frac{a-8}{3} \geq \left\lceil \frac{a-5}{3} \right\rceil$.

Note that P_{11} and P_{12} are necessarily disjoint as are P_{21} and P_{22}, and that v_1 and v_2 are not on any of these paths.

P_{12} must intersect both P_{21} and P_{22}: Firstly, P_{12} must intersect the longer of P_{21} and P_{22} since otherwise we get a too long path in G; containing the two longer paths and P. Furthermore, if P_{12} does not intersect the shorter of P_{21} and P_{22}, then we get a path of length at least $\lceil \frac{a+1}{2} \rceil + b + 1 + \left\lceil \frac{a-5}{3} \right\rceil \geq \frac{a+1}{2} + \frac{a-7}{3} + b + 1 = \frac{5}{6}(a - 1) > \left\lceil \frac{2a}{3} \right\rceil + 1 + b$ (since $a \geq 15$) in G; containing P_{12}, P, and the shorter of P_{21} and P_{22}, a contradiction. Similarly, the longer of P_{21} and P_{22} must intersect both P_{11} and P_{12}.

Note that since P_{11} and P_{12} are disjoint and P_{21} and P_{22} are disjoint, P_{2i}, $i \in \{1, 2\}$ can only intersect one of P_{11} and P_{12} first and vice-versa.

Suppose that both P_{21} and P_{22} intersect P_{12} first. Then we obtain a path of length at least $x + b + 1 + 1 + \left\lfloor \frac{5}{2} \right\rfloor \geq a + 1 - y + \left\lfloor \frac{y-1}{2} \right\rfloor + b + 2 \geq a - \frac{1}{2} \left\lceil \frac{2a+2}{3} \right\rceil + \frac{5}{2} + b \geq a - \frac{1}{2} \left(\frac{2a+2}{3} \right) + \frac{5}{2} + b = \frac{2a}{3} + \frac{13}{6} + b > \left\lceil \frac{2a}{3} \right\rceil + 1 + b$ in G; containing P_{11}, P, at least one edge of either P_{21} or P_{22} and at least a half of P_{12}, a contradiction.

Now, suppose that P_{21} or P_{22} intersects P_{11} first, say P_{21}. Then we obtain a path of length at least $y + \left\lfloor \frac{5}{2} \right\rfloor + b + 1 + 1 = y + \left\lfloor \frac{1}{2} (a + 1 - y) \right\rfloor + b + 2 \geq y + \frac{a+1-y-1}{2} + b + 2 = \frac{a}{2} + \frac{9}{2} + b + 2 \geq \frac{1}{2} \left\lceil \frac{a+1}{2} \right\rceil + \frac{9}{2} + b + 2 \geq \frac{2a+9}{4} + b > \left\lceil \frac{2a}{3} \right\rceil + 1 + b$ in G; containing P_{12}, P, at least one edge of P_{21} and at least a half of P_{11}, a contradiction.

Theorem 2.4. $\chi_{W_n}(W_k) \leq \left\lceil \frac{3k}{2n+3} \right\rceil$ for all $n \geq 15$ and $k \geq 1$.

Proof. $W_{\left\lceil \frac{2n+3}{4} \right\rceil} \subseteq W_n^c$ for all positive integers c and n: the proof is by induction on c. The result holds for $c = 1$. Suppose now that the result holds for c. Note that $W_{(c+1)\left\lceil \frac{2n+3}{4} \right\rceil} = W_{\left\lceil \frac{2n}{4} \right\rceil + 1 + c \left\lceil \frac{2n+3}{4} \right\rceil}$ which by Theorem 2.3 is
I. Broere, S. Dorfling and E. Jonck

contained in \(W_n \circ W^c_{c[2n+3]} \) which by the induction hypothesis is contained in \(W_n \circ W^c_n = W^c_{n+1} \).

Now, with \(c = \left\lceil \frac{3k}{2n+3} \right\rceil \), since \(k \leq \left\lceil \frac{3k}{2n+3} \right\rceil \left\lceil \frac{2n+3}{3} \right\rceil \) we have that \(W_k \subseteq W^c_{c[2n+3]} \) \(\subseteq W^c_n \).

This result is close to the bound \(\chi_{W_n}(W_k) \leq \left\lceil \frac{3(k-n)}{2n+2} \right\rceil + 1 \) presented in [7] but our method of proof is completely different.

3. Results Relating \(S_k \) and \(W_n \)

Theorem 3.1. For positive integers \(n \) and \(k \) we have that

\[
\left\lceil \frac{k+1}{n+1} \right\rceil \leq \chi_{W_n}(S_k) \leq \left\lceil \frac{k+1}{2} \right\rceil.
\]

Proof. The left inequality holds since \(K_{k+1} \in S_k \). The right inequality follows as a corollary to Theorem 1.3.

The first inequality in Theorem 3.1 may be strict, for example \(\chi_{W_2}(S_2) = 2 > \left\lceil \frac{2+1}{2+1} \right\rceil \) (since \(S_2 \not\subseteq W_2 \)). Equality in both the inequalities may be achieved, for example, by Theorem 1.3 we have that \(\chi_{S_n}(S_k) = \left\lceil \frac{k+1}{n+1} \right\rceil \) and therefore \(\chi_{W_1}(S_k) = \left\lceil \frac{k+1}{2} \right\rceil \).

Note that whether or not the second inequality proved in Theorem 3.1 may be strict still remains an open problem.

We now start working towards bounds on \(\chi_{S_n}(W_k) \).

Theorem 3.2. \(W_4 \subseteq S_2 \circ S_1 \).

Proof. Consider any graph \(G \) in \(W_4 \). Take \(V_1 \) to be a subset of \(V(G) \) such that, in order of priority:

(i) \(G[V_1] \) is in \(S_2 \),

(ii) \(G[V_1] \) contains a maximum number of 4-components,

(iii) \(G[V_1] \) contains a maximum number of components isomorphic to \(K_3 \),

(iv) \(G[V_1] \) contains a maximum number of 2-components and

(v) \(G[V_1] \) contains a maximum number of isolated vertices.

(In other words, we consider all subsets \(V \) of \(V(G) \) such that \(G[V] \in S_2 \). Amongst these we consider all subsets \(V \) for which \(G[V] \) has a maximum
number of 4-components. Amongst these we consider all subsets inducing a maximum number of components isomorphic to K_3 etc.)

Let $V_2 = V(G) - V_1$. We will show that $G[V_2] \in S_1$. Suppose, to the contrary, that $G[V_2] \notin S_1$ and let v be a vertex in $G[V_2]$ of degree at least two with u and w two of its neighbours in $G[V_2]$. Note that by choice of V_1 every component in $G[V_1]$ is a 4-component, K_3, K_2, or K_1.

Moreover, by (v) it follows that u, v and w each have at least one neighbour in V_1. Furthermore, v cannot be adjacent to a 4-component in $G[V_1]$. This case is analogous to the above case since a 4-component will also contribute three vertices to give a P_6 in G. Moreover, neither u nor w are adjacent to 4-components or triangles in $G[V_1]$, since otherwise we obtain at least a P_6 in G.

Therefore v must be adjacent to a K_2 in $G[V_1]$. Note that u and w must each have at least one neighbour on the K_2 adjacent to v in $G[V_1]$, otherwise we obtain a P_6 in G. If v is adjacent to both vertices on the K_2 in $G[V_1]$, then we can replace the components in $G[V_1]$ that are adjacent to u, v and w with a triangle; still satisfying (i) and (ii), but contradicting (iii).

Thus v has only one neighbour on any K_2 in $G[V_1]$. If u or w is adjacent to the same vertex as v on the K_2 adjacent to v in $G[V_1]$, then once again we can replace the components in $G[V_1]$ that are adjacent to u, v and w with a triangle; still satisfying (i) and (ii), but contradicting (iii). Therefore, both u and w are adjacent to the vertex on the K_2 in $G[V_1]$ that is not adjacent to v. However, then we can replace the components in $G[V_1]$ that are adjacent to u, v and w with a 4-component; containing the K_2 in $G[V_1]$ and the vertices v and either u or w; still satisfying (i), but contradicting (ii). Therefore $G[V_2] \in S_1$.

\textbf{Corollary 3.3.} For all $n \geq 2$ and k, we have that $\chi_{S_n}(W_k) \leq 2 \left\lceil \frac{k+1}{5} \right\rceil$.
Proof. It is known that $W_{4+k+1} \subseteq W_4 \circ W_k$ (see [3]). Similar to the proof of Theorem 1.3 it follows that $W_k \subseteq W_{\lceil \frac{k+1}{2} \rceil}$. The result now follows from Theorem 3.2.

The inequality in Corollary 3.3 may be strict, for example $\chi_{S_2}(W_1) = 1 < 2 = 2\lceil \frac{2}{3} \rceil$. Equality may also be obtained, for example $\chi_{S_2}(W_2) = 2 = 2\lceil \frac{3}{5} \rceil$.

Having proved Corollary 3.3 we naturally ask: Can this bound be improved and if so under what conditions? Corollary 3.5 gives us an answer for $n \geq 5$ and Theorem 3.7 for $n \geq 9$.

Theorem 3.4. For an additive hereditary property Q with $c(Q) \geq 5$, the following holds: $W_k \subseteq Q^{\lceil \frac{k}{3} \rceil} \circ O$.

Proof. Let $c = \lceil \frac{k}{3} \rceil$. Consider any graph G in W_k. Take V_1 to be a subset of $V(G)$ such that, in order of priority:

(i) $G[V_1]$ is in Q,
(ii) $G[V_1]$ contains a maximum number of 6-components,
(iii) $G[V_1]$ contains a maximum number of 4-components,
(iv) $G[V_1]$ contains a maximum number of 2-components and
(v) $G[V_1]$ contains a maximum number of isolated vertices.

Now, for $2 \leq i \leq c$ take V_i to be a subset of $V(G) - \bigcup_{j=1}^{i-1} V_j$ such that for each i, $G[V_i]$ satisfies the above list. Let $S = V(G) - \bigcup_{j=1}^{c-1} V_j$. We will show that $G[S] \in O$. Suppose, to the contrary, that $G[S] \notin O$ and let v be a vertex in $G[S]$ of degree at least one and u be a neighbour of v in $G[S]$. Suppose that v is not an end-vertex of a P_4 in $G[V_c \cup \{v\}]$ and that u is not an end-vertex of a P_5 in $G[V_c \cup \{u\}]$. Note that for every i, the choice of V_i gives that every component in $G[V_i]$ is a 6-component, a 4-component, K_2 or K_1. Moreover, by (iv) it follows that u and v have at least one neighbour in V_c each and by (iv) both u and v are adjacent to nontrivial components in $G[V_c]$. Since v is not an end-vertex of a P_4 in $G[V_c \cup \{v\}]$ it follows that v is not adjacent to a 6-component or a 4-component in $G[V_c]$. Similarly, u is not adjacent to a 6-component in $G[V_c]$.

Suppose that u is adjacent to a 4-component in $G[V_c]$. Then, since v is not adjacent to a 4-component in $G[V_c]$, we can replace the components in $G[V_c]$ that are adjacent to u and v with a 6-component; still satisfying (i) since $K_6 \in Q$, but contradicting (ii), since neither u nor v is adjacent to a 6-component in $G[V_c]$.\[\]
Therefore \(u \) is adjacent to a 2-component in \(G[V_c] \). However, then we can replace the components in \(G[V_c] \) that are adjacent to \(u \) and \(v \) with a 4-component; satisfying (i) and (ii) but contradicting (iii).

Therefore, \(u \) is an end-vertex of a \(P_5 \) in \(G[V_c \cup \{u\}] \) or \(v \) is an end-vertex of a \(P_4 \) in \(G[V_c \cup \{v\}] \). In both cases it follows that there is a path \(P \) of length four in \(G[S \cup V_c] \). Let \(x \) be the end-vertex of \(P \) in \(V_c \) and \(y \) the neighbour of \(x \) on \(P \). By repeating this argument it follows that \(x \) is an end-vertex of a \(P_4 \) in \(G[V_c \setminus \{x\}] \) or \(y \) is an end-vertex of a \(P_5 \) in \(G[V_{c-1} \cup \{y\}] \). Continuing in this way we obtain a path of length at least \(3c+1 \geq k+1 \) in \(G \), a contradiction. Therefore, \(G[S] \notin \mathcal{O} \).

Corollary 3.5. For an additive hereditary property \(Q \) with \(c(Q) \geq 5 \), the following holds: \(\chi_Q(W_k) \leq \left\lceil \frac{k}{3} \right\rceil + 1 \).

The inequality in Corollary 3.5 may be strict, for example we have that \(\chi_{\mathcal{T}_6}(W_k) = \left\lceil \frac{k+1}{6} \right\rceil < \frac{k+3}{3} \leq \left\lceil \frac{k}{3} \right\rceil + 1 \) with \(K_6 \in \mathcal{T}_5 \) and \(K_7 \notin \mathcal{T}_5 \). Equality can also be obtained: In Theorem 3.8 (still to follow) we prove that \(\chi_{S_n}(W_6) \geq 3 \) and by Corollary 3.5 we have \(\chi_{S_n}(W_6) \leq \left\lceil \frac{6}{3} \right\rceil + 1 = 3 \).

Theorem 3.6. For an additive hereditary property \(Q \) with \(c(Q) \geq 9 \), the following holds: \(W_k \subseteq Q^{\left\lceil \frac{k-1}{4} \right\rceil} \circ S_1 \).

Proof. Let \(c = \left\lceil \frac{k-1}{4} \right\rceil \). Consider any graph \(G \) in \(W_k \). Take \(V_1 \) to be a subset of \(V(G) \) such that, in order of priority:

(i) \(G[V_1] \) is in \(Q \),
(ii) \(G[V_1] \) contains a maximum number of 10-components,
(iii) \(G[V_1] \) contains a maximum number of 8-components,
(iv) \(G[V_1] \) contains a maximum number of 6-components,
(v) \(G[V_1] \) contains a maximum number of 4-components,
(vi) \(G[V_1] \) contains a maximum number of 2-components and
(vii) \(G[V_1] \) contains a maximum number of isolated vertices.

Now, for \(2 \leq i \leq c \) take \(V_i \) to be a subset of \(V(G) - \bigcup_{j=1}^{i-1} V_j \) such that for each \(i \), \(G[V_i] \) satisfies the above list. Let \(S = V(G) - \bigcup_{j=1}^{c-1} V_j \). We will show that \(G[S] \in S_1 \). Suppose, to the contrary, that \(G[S] \notin S_1 \) and let \(v \) be a vertex in \(G[S] \) of degree at least two with \(u \) and \(w \) neighbours of \(v \) in \(G[S] \).
Suppose that u is not an end-vertex of a P_7 in $G[V_c \cup \{u\}]$ and that v is not an end-vertex of a P_6 in $G[V_c \cup \{v\}]$ and that w is not an end-vertex of a P_5 in $G[V_c \cup \{w\}]$. Note that for every i, the choice of V_i gives that every component in $G[V_i]$ is a 10-component, an 8-component, a 6-component, a 4-component, K_2 or K_1. Moreover, by (vii) it follows that u, v and w have at least one neighbour in V_c each and by (vi) each of u, v and w is adjacent to a nontrivial component in $G[V_c]$. Since u is not an end-vertex of a P_7 in $G[V_c \cup \{u\}]$ it follows that w is not adjacent to a 10-component in $G[V_c]$. Similarly, v is not adjacent to a 10-component or an 8-component in $G[V_c]$ and w is not adjacent to a 10-component, an 8-component or a 6-component in $G[V_c]$.

Suppose that u is adjacent to an 8-component in $G[V_c]$. Then, since neither v nor w are adjacent to an 8-component in $G[V_c]$, we can replace the components in $G[V_c]$ that are adjacent to u, v and w with a 10-component; still satisfying (i) but contradicting (ii).

Suppose that v is adjacent to a 6-component in $G[V_c]$. Then, since w is not adjacent to a 6-component in $G[V_c]$, we can replace the components in $G[V_c]$ that are adjacent to u, v and w with an 8-component; still satisfying (i) and (ii) but contradicting (iii), since none of u, v and w is adjacent to a 10-component or an 8-component in $G[V_c]$. Similarly, u is not adjacent to a 6-component in $G[V_c]$.

Suppose that v is adjacent to a 4-component in $G[V_c]$. Note that since u, v and w are not adjacent to 6-components in $G[V_c]$ it follows that neither u nor w is adjacent to a 4-component in $G[V_c]$ — otherwise we can replace the components in $G[V_c]$ that are adjacent to u, v and w with a 6-component; satisfying (i) through (iii) but contradicting (iv). Therefore, since u and w are not adjacent to 4-components in $G[V_c]$, we can replace the components in $G[V_c]$ that are adjacent to u, v and w with a 6-component; containing three vertices of the 4-component, u and its neighbour in V_c.

Therefore v is adjacent to a 2-component in $G[V_c]$. However, then we can replace the components in $G[V_c]$ that are adjacent to u, v and w with a 4-component; satisfying (i) through (iv) but contradicting (v).

Therefore, u is an end-vertex of a P_7 in $G[V_c \cup \{u\}]$ or v is an end-vertex of a P_6 in $G[V_c \cup \{v\}]$ or w is an end-vertex of a P_5 in $G[V_c \cup \{w\}]$. In each case it follows that there is a path P of length 6 in $G[S \cup V_c]$. Let z be the end-vertex of P in V_c, y the neighbour of z on P and x the other neighbour of y on P. By repeating the above argument it follows that z is an end-vertex of a P_5 in $G[V_{c-1} \cup \{z\}]$ or y is an end-vertex of a P_6 in $G[V_{c-1} \cup \{y\}]$ or x
is an end-vertex of a P_7 in $G[V_{c-1} \cup \{x\}]$. Continuing in this way we obtain a path of length at least $4c + 2 \geq k + 1$ in G, a contradiction. Therefore, $G[S] \in S_1$.

Theorem 3.7. For $n \geq 9$, the following holds:

$$\left\lfloor \frac{k + 1}{n + 1} \right\rfloor \leq \chi_{S_n}(W_k) \leq \left\lceil \frac{k - 1}{4} \right\rceil + 1.$$

Proof. The left inequality holds since $K_{k+1} \in W_k$. The right inequality follows as a corollary of Theorem 3.6 since $K_10 \in S_n$ for each $n \geq 9$.

Our next result improves on the lower bound in Theorem 3.7 for large values of n.

Theorem 3.8 For all positive integers k and n, $\chi_{S_n}(W_k) \geq \lfloor \log_2(k + 2) \rfloor$.

Proof. We first prove, by induction on m, that for all positive integers m and n, $W_{2m-1-2} \not\subseteq S_n^m$. For the case where $m = 1$ the result holds since $W_1 \not\subseteq S_n$. Assume therefore that the result holds for $m - 1$, thus there exists a graph H such that $H \in W_{2m-2}$ and $H \not\subseteq S_n^{m-1}$. Now let $G = (n + 1)H + K_1$. Clearly $G \in W_{2(2m-1-2)+2} = W_{2m+1-2}$. As in the proof of Theorem 1.4 $G \not\subseteq S_n^m$.

Now, let k and n be any positive integers. We have that $W_k \supseteq W_{2\lfloor \log_2(k+2) \rfloor - 2} \not\subseteq S_n^{\lfloor \log_2(k+2) \rfloor - 1}$ and the result follows.

Corollary 3.5 and Theorem 3.7 seem to suggest that for every k and m we can get $W_k \subseteq S_n^{\left\lceil \frac{k}{m} \right\rceil + 1}$ for all n sufficiently large. However, Theorem 3.8 implies that $W_6 \not\subseteq S_n^{\left\lceil \frac{6}{2} \right\rceil + 1}$ for all n since $\chi_{S_n}(W_6) \geq \lfloor \log_2(8) \rfloor = 3$. The method of proof in Theorem 3.6 does not extend. If we try to maximize with respect to 12-components, 10-components etc. the argument fails, and assuming that k is large makes no difference.

Acknowledgement

The authors would like to thank Michael Dorfling and an anonymous referee for their helpful suggestions.
References

Received 10 March 2001
Revised 3 December 2001