PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 22 | 2 | 259-270
Tytuł artykułu

Generalized chromatic numbers and additive hereditary properties of graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let 𝓟 and 𝓠 be additive hereditary properties of graphs. The generalized chromatic number $χ_{𝓠}(𝓟)$ is defined as follows: $χ_{𝓠}(𝓟) = n$ iff 𝓟 ⊆ 𝓠 ⁿ but $𝓟 ⊊ 𝓠^{n-1}$. We investigate the generalized chromatic numbers of the well-known properties of graphs 𝓘ₖ, 𝓞ₖ, 𝓦ₖ, 𝓢ₖ and 𝓓ₖ.
Wydawca
Rocznik
Tom
22
Numer
2
Strony
259-270
Opis fizyczny
Daty
wydano
2002
otrzymano
2001-03-10
poprawiono
2001-12-03
Twórcy
autor
  • Department of Mathematics, Faculty of Science, Rand Afrikaans University, P.O. Box 524, Auckland Park, South Africa
  • Department of Mathematics, Faculty of Science, Rand Afrikaans University, P.O. Box 524, Auckland Park, South Africa
  • Department of Mathematics, Faculty of Science, Rand Afrikaans University, P.O. Box 524, Auckland Park, South Africa
Bibliografia
  • [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
  • [2] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.
  • [3] I. Broere, M.J. Dorfling, J.E Dunbar and M. Frick, A path(ological) partition problem, Discuss. Math. Graph Theory 18 (1998) 113-125, doi: 10.7151/dmgt.1068.
  • [4] I. Broere, P. Hajnal and P. Mihók, Partition problems and kernels of graphs, Discuss. Math. Graph Theory 17 (1997) 311-313, doi: 10.7151/dmgt.1058.
  • [5] S.A. Burr and M.S. Jacobson, On inequalities involving vertex-partition parameters of graphs, Congr. Numer. 70 (1990) 159-170.
  • [6] G. Chartrand, D.P. Geller and S.T. Hedetniemi, A generalization of the chromatic number, Proc. Camb. Phil. Soc. 64 (1968) 265-271, doi: 10.1017/S0305004100042808.
  • [7] M. Frick and F. Bullock, Detour chromatic numbers, manuscript.
  • [8] P. Hajnal, Graph partitions (in Hungarian), Thesis, supervised by L. Lovász (J.A. University, Szeged, 1984).
  • [9] T.R. Jensen and B. Toft, Graph colouring problems (Wiley-Interscience Publications, New York, 1995).
  • [10] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar 1 (1966) 237-238; MR34#1715.
  • [11] P. Mihók, Problem 4, p. 86 in: M. Borowiecki and Z. Skupień (eds), Graphs, Hypergraphs and Matroids (Zielona Góra, 1985).
  • [12] J. Nesetril and V. Rödl, Partitions of vertices, Comment. Math. Univ. Carolinae 17 (1976) 85-95; MR54#173.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1174
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.