ArticleOriginal scientific text
Title
Generalized chromatic numbers and additive hereditary properties of graphs
Authors 1, 1, 1
Affiliations
- Department of Mathematics, Faculty of Science, Rand Afrikaans University, P.O. Box 524, Auckland Park, South Africa
Abstract
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let and be additive hereditary properties of graphs. The generalized chromatic number is defined as follows: iff ⊆ ⁿ but . We investigate the generalized chromatic numbers of the well-known properties of graphs ₖ, ₖ, ₖ, ₖ and ₖ.
Keywords
property of graphs, additive, hereditary, generalized chromatic number
Bibliography
- M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
- M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.
- I. Broere, M.J. Dorfling, J.E Dunbar and M. Frick, A path(ological) partition problem, Discuss. Math. Graph Theory 18 (1998) 113-125, doi: 10.7151/dmgt.1068.
- I. Broere, P. Hajnal and P. Mihók, Partition problems and kernels of graphs, Discuss. Math. Graph Theory 17 (1997) 311-313, doi: 10.7151/dmgt.1058.
- S.A. Burr and M.S. Jacobson, On inequalities involving vertex-partition parameters of graphs, Congr. Numer. 70 (1990) 159-170.
- G. Chartrand, D.P. Geller and S.T. Hedetniemi, A generalization of the chromatic number, Proc. Camb. Phil. Soc. 64 (1968) 265-271, doi: 10.1017/S0305004100042808.
- M. Frick and F. Bullock, Detour chromatic numbers, manuscript.
- P. Hajnal, Graph partitions (in Hungarian), Thesis, supervised by L. Lovász (J.A. University, Szeged, 1984).
- T.R. Jensen and B. Toft, Graph colouring problems (Wiley-Interscience Publications, New York, 1995).
- L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar 1 (1966) 237-238; MR34#1715.
- P. Mihók, Problem 4, p. 86 in: M. Borowiecki and Z. Skupień (eds), Graphs, Hypergraphs and Matroids (Zielona Góra, 1985).
- J. Nesetril and V. Rödl, Partitions of vertices, Comment. Math. Univ. Carolinae 17 (1976) 85-95; MR54#173.