ArticleOriginal scientific text

Title

Trestles in polyhedral graphs

Authors 1, 2

Affiliations

  1. Department of Mathematics, The Faculty of Business Economics in Košice, University of Economics in Bratislava, Tajovskeho 13, 041 30 Košice, Slovakia
  2. Institute of Algebra, Technical University Dresden, Mommsenstrasse 13, D-01062 Dresden, Germany

Keywords

polyhedral graphs, non-Hamiltonian, k-trestle

Bibliography

  1. D. Barnette, 2-connected spanning subgraphs of planar 3-connected graphs, J. Combin. Theory (B) 61 (1994) 210-216, doi: 10.1006/jctb.1994.1045.
  2. T. Böhme and J. Harant, On hamiltonian cycles in 4- and 5-connected planar triangulations, Discrete Math. 191 (1998) 25-30, doi: 10.1016/S0012-365X(98)00089-2.
  3. T. Böhme, J. Harant and M. Tkáč, On certain Hamiltonian cycles in planar graphs, J. Graph Theory 32 (1999) 81-96, doi: 10.1002/(SICI)1097-0118(199909)32:1<81::AID-JGT8>3.0.CO;2-9
  4. V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973) 215-228, doi: 10.1016/0012-365X(73)90138-6.
  5. Z. Gao, 2-connected coverings of bounded degree in 3-connected graphs, J. Graph Theory 20 (1995) 327-338, doi: 10.1002/jgt.3190200309.
  6. D.P. Sanders and Y. Zhao, On 2-connected spanning subgraphs with low maximum degree, J. Combin. Theory (B) 74 (1998) 64-86, doi: 10.1006/jctb.1998.1836.
  7. C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983) 169-176, doi: 10.1002/jgt.3190070205.
  8. W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116, doi: 10.1090/S0002-9947-1956-0081471-8.
Pages:
193-198
Main language of publication
English
Received
2000-07-24
Accepted
2001-07-19
Published
2002
Exact and natural sciences