Download PDF - Trestles in polyhedral graphs
ArticleOriginal scientific text
Title
Trestles in polyhedral graphs
Authors 1, 2
Affiliations
- Department of Mathematics, The Faculty of Business Economics in Košice, University of Economics in Bratislava, Tajovskeho 13, 041 30 Košice, Slovakia
- Institute of Algebra, Technical University Dresden, Mommsenstrasse 13, D-01062 Dresden, Germany
Keywords
polyhedral graphs, non-Hamiltonian, k-trestle
Bibliography
- D. Barnette, 2-connected spanning subgraphs of planar 3-connected graphs, J. Combin. Theory (B) 61 (1994) 210-216, doi: 10.1006/jctb.1994.1045.
- T. Böhme and J. Harant, On hamiltonian cycles in 4- and 5-connected planar triangulations, Discrete Math. 191 (1998) 25-30, doi: 10.1016/S0012-365X(98)00089-2.
- T. Böhme, J. Harant and M. Tkáč, On certain Hamiltonian cycles in planar graphs, J. Graph Theory 32 (1999) 81-96, doi: 10.1002/(SICI)1097-0118(199909)32:1<81::AID-JGT8>3.0.CO;2-9
- V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973) 215-228, doi: 10.1016/0012-365X(73)90138-6.
- Z. Gao, 2-connected coverings of bounded degree in 3-connected graphs, J. Graph Theory 20 (1995) 327-338, doi: 10.1002/jgt.3190200309.
- D.P. Sanders and Y. Zhao, On 2-connected spanning subgraphs with low maximum degree, J. Combin. Theory (B) 74 (1998) 64-86, doi: 10.1006/jctb.1998.1836.
- C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983) 169-176, doi: 10.1002/jgt.3190070205.
- W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116, doi: 10.1090/S0002-9947-1956-0081471-8.