ArticleOriginal scientific text

Title

Detour chromatic numbers

Authors 1, 1

Affiliations

  1. University of South Africa, P.O. Box 392, Unisa, 0003, South Africa

Abstract

The nth detour chromatic number, χₙ(G) of a graph G is the minimum number of colours required to colour the vertices of G such that no path with more than n vertices is monocoloured. The number of vertices in a longest path of G is denoted by τ( G). We conjecture that χₙ(G) ≤ ⎡(τ(G))/n⎤ for every graph G and every n ≥ 1 and we prove results that support the conjecture. We also present some sufficient conditions for a graph to have nth chromatic number at most 2.

Keywords

detour, generalised chromatic number, longest path, vertex partition, girth, circumference, nearly bipartite

Bibliography

  1. M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanisin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
  2. I. Broere, M. Dorfling, J. E. Dunbar and M. Frick, A Pathological Partition Problem, Discuss. Math. Graph Theory 18 (1998) 113-125, doi: 10.7151/dmgt.1068.
  3. I. Broere, P. Hajnal and P. Mihók, Partition problems and kernels of graphs, Discuss. Math. Graph Theory 17 (1997) 311-313, doi: 10.7151/dmgt.1058.
  4. G. Chartrand, D.P. Geller and S. Hedetniemi, A generalization of the chromatic number, Proc. Cambridge Phil. Soc. 64 (1968) 265-271.
  5. G. Chartrand and L. Lesniak, Graphs & Digraphs (Chapman & Hall, London, 3rd Edition, 1996).
  6. J.E. Dunbar and M. Frick, Path kernels and partitions, JCMCC 31 (1999) 137-149.
  7. J.E. Dunbar, M. Frick and F. Bullock, Path partitions and maximal Pₙ-free sets, submitted.
  8. E. Györi, A.V. Kostochka and T. Łuczak, Graphs without short odd cycles are nearly bipartite, Discrete Math. 163 (1997) 279-284, doi: 10.1016/0012-365X(95)00321-M.
  9. P. Mihók, Problem 4, p. 86 in: M. Borowiecki and Z. Skupień (eds), Graphs, Hypergraphs and Matroids (Zielona Góra, 1985).
Pages:
283-291
Main language of publication
English
Received
2001-02-19
Accepted
2001-10-08
Published
2001
Exact and natural sciences