EN
In this paper Gallai's inequality on the number of edges in critical graphs is generalized for reducible additive induced-hereditary properties of graphs in the following way. Let $𝓟₁,𝓟₂,...,𝓟ₖ$ (k ≥ 2) be additive induced-hereditary properties, $𝓡 = 𝓟₁ ∘ 𝓟₂ ∘ ... ∘𝓟ₖ$ and $δ = ∑_{i=1}^k δ(𝓟_i)$. Suppose that G is an 𝓡 -critical graph with n vertices and m edges. Then 2m ≥ δn + (δ-2)/(δ²+2δ-2)*n + (2δ)/(δ²+2δ-2) unless 𝓡 = 𝓞² or $G = K_{δ+1}$. The generalization of Gallai's inequality for 𝓟-choice critical graphs is also presented.