PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Discussiones Mathematicae Graph Theory

2001 | 21 | 1 | 77-93
Tytuł artykułu

### On graphs all of whose {C₃,T₃}-free arc colorations are kernel-perfect

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A digraph D is called a kernel-perfect digraph or KP-digraph when every induced subdigraph of D has a kernel.
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m distinct colours. A path P is monochromatic in D if all of its arcs are coloured alike in D. The closure of D, denoted by ζ(D), is the m-coloured digraph defined as follows:
V( ζ(D)) = V(D), and
A( ζ(D)) = ∪_{i} {(u,v) with colour i: there exists a monochromatic path of colour i from the vertex u to the vertex v contained in D}.
We will denoted by T₃ and C₃, the transitive tournament of order 3 and the 3-directed-cycle respectively; both of whose arcs are coloured with three different colours.
Let G be a simple graph. By an m-orientation-coloration of G we mean an m-coloured digraph which is an asymmetric orientation of G.
By the class E we mean the set of all the simple graphs G that for any m-orientation-coloration D without C₃ or T₃, we have that ζ(D) is a KP-digraph.
In this paper we prove that if G is a hamiltonian graph of class E, then its complement has at most one nontrivial component, and this component is K₃ or a star.
Słowa kluczowe
EN
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
77-93
Opis fizyczny
Daty
wydano
2001
otrzymano
2000-09-27
poprawiono
2001-02-15
Twórcy
• Instituto de Matemáticas, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D.F., Mexico
• Instituto de Matemáticas, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D.F., Mexico
Bibliografia
• [1] H. Galeana-Sánchez and J.J. García, Kernels in the closure of coloured digraphs, submitted.
• [2] Shen Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111, doi: 10.1016/0095-8956(88)90059-7.
Typ dokumentu
Bibliografia
Identyfikatory