Download PDF - Full domination in graphs
ArticleOriginal scientific text
Title
Full domination in graphs
Authors 1, 2, 3, 2
Affiliations
- Department of Mathematics, University of Central Florida, Orlando, FL 32816
- Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, MI 49008
- Program of Computer Science, University of Central Florida, Orlando, FL 32816
Abstract
For each vertex v in a graph G, let there be associated a subgraph of G. The vertex v is said to dominate as well as dominate each vertex and edge of . A set S of vertices of G is called a full dominating set if every vertex of G is dominated by some vertex of S, as is every edge of G. The minimum cardinality of a full dominating set of G is its full domination number . A full dominating set of G of cardinality is called a -set of G. We study three types of full domination in graphs: full star domination, where is the maximum star centered at v, full closed domination, where is the subgraph induced by the closed neighborhood of v, and full open domination, where is the subgraph induced by the open neighborhood of v.
Keywords
full domination, full star domination, full closed domination, full open domination
Bibliography
- T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 2 (1959) 133-138.
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
- S.R. Jayaram, Y.H.H. Kwong and H.J. Straight, Neighborhood sets in graphs, Indian J. Pure Appl. Math. 22 (1991) 259-268.
- E. Sampathkumar and P.S. Neeralagi, The neighborhood number of a graph, Indian J. Pure Appl. Math. 16 (1985) 126-136.
- O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38 (Amer. Math. Soc. Providence, RI, 1962).