PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 21 | 1 | 31-42
Tytuł artykułu

On graphs with a unique minimum hull set

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show that for every integer k ≥ 2 and every k graphs G₁,G₂,...,Gₖ, there exists a hull graph with k hull vertices v₁,v₂,...,vₖ such that link $L(v_i) = G_i$ for 1 ≤ i ≤ k. Moreover, every pair a, b of integers with 2 ≤ a ≤ b is realizable as the hull number and geodetic number (or upper geodetic number) of a hull graph. We also show that every pair a,b of integers with a ≥ 2 and b ≥ 0 is realizable as the hull number and forcing geodetic number of a hull graph.
Wydawca
Rocznik
Tom
21
Numer
1
Strony
31-42
Opis fizyczny
Daty
wydano
2001
otrzymano
2000-03-08
poprawiono
2001-03-14
Twórcy
  • Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, MI 49008, USA
autor
  • Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, MI 49008, USA
Bibliografia
  • [1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).
  • [2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, to appear.
  • [3] G. Chartrand, F. Harary and P. Zhang, On the hull number of a graph, Ars Combin. 57 (2000) 129-138.
  • [4] G. Chartrand and P. Zhang, The geodetic number of an oriented graph, European J. Combin. 21 (2) (2000) 181-189, doi: 10.1006/eujc.1999.0301.
  • [5] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19 (1999) 45-58, doi: 10.7151/dmgt.1084.
  • [6] G. Chartrand and P. Zhang, The forcing hull number of a graph, J. Combin. Math. Combin. Comput. to appear.
  • [7] M.G. Everett and S.B. Seidman, The hull number of a graph, Discrete Math. 57 (1985) 217-223, doi: 10.1016/0012-365X(85)90174-8.
  • [8] F. Harary and J. Nieminen, Convexity in graphs, J. Differential Geom. 16 (1981) 185-190.
  • [9] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Mathl. Comput. Modelling. 17 (11) (1993) 89-95, doi: 10.1016/0895-7177(93)90259-2.
  • [10] H.M. Mulder, The Interval Function of a Graph (Methematisch Centrum, Amsterdam, 1980).
  • [11] H.M. Mulder, The expansion procedure for graphs, in: Contemporary Methods in Graph Theory ed., R. Bodendiek (Wissenschaftsverlag, Mannheim, 1990) 459-477.
  • [12] L. Nebeský, A characterization of the interval function of a connected graph, Czech. Math. J. 44 (119) (1994) 173-178.
  • [13] L. Nebeský, Characterizing of the interval function of a connected graph, Math. Bohem. 123 (1998) 137-144.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1131
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.