ArticleOriginal scientific text
Title
Sum labellings of cycle hypergraphs
Authors 1
Affiliations
- Institute of Mathematics, Medical University of Lübeck, Wallstraße 40, 23560 Lübeck, Germany
Abstract
A hypergraph is a sum hypergraph iff there are a finite S ⊆ IN⁺ and d̲, [d̅] ∈ IN⁺ with 1 < d̲ ≤ [d̅] such that is isomorphic to the hypergraph where V = S and . For an arbitrary hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices such that is a sum hypergraph. Generalizing the graph Cₙ we obtain d-uniform hypergraphs where any d consecutive vertices of Cₙ form an edge. We determine sum numbers and investigate properties of sum labellings for this class of cycle hypergraphs.
Keywords
hypergraphs, sum number, vertex labelling
Bibliography
- C. Berge, Hypergraphs, (North Holland, Amsterdam - New York - Oxford - Tokyo, 1989).
- J.C. Bermond, A. Germa, M.C. Heydemann and D. Sotteau, Hypergraphes hamiltoniens, Probl. Comb. et Théorie des Graphes, Orsay 1976, Colloques int. CNRS 260 (1978) 39-43.
- F. Harary, Sum graphs and difference graphs, Congressus Numerantium 72 (1990) 101-108.
- F. Harary, Sum graphs over all the integers, Discrete Math. 124 (1994) 99-105, doi: 10.1016/0012-365X(92)00054-U.
- G.Y. Katona and H.A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999) 205-212, doi: 10.1002/(SICI)1097-0118(199903)30:3<205::AID-JGT5>3.0.CO;2-O
- M. Miller, J.F. Ryan and W.F. Smyth, The Sum Number of the cocktail party graph, Bull. of the ICA 22 (1998) 79-90.
- A. Sharary, Integral sum graphs from complete graphs, cycles and wheels, Arab. Gulf J. Scient. Res. 14 (1996) 1-14.
- M. Sonntag, Antimagic and supermagic vertex-labelling of hypergraphs, Techn. Univ. Bergakademie Freiberg, Preprint 99-5 (1999).
- H.-M. Teichert, Classes of hypergraphs with sum number one, Discuss. Math. Graph Theory 20 (2000) 93-103, doi: 10.7151/dmgt.1109.