A CLASS OF TIGHT CIRCULANT TOURNAMENTS

HORTENSIA GALEANA-SÁNCHEZ

AND

VÍCTOR NEUMANN-LARA

Instituto de Matemáticas, UNAM Area de la Investigación Científica Ciudad Universitaria 04510, México, D.F., MEXICO

e-mail: hgaleana@matem.unam.mx e-mail: neumann@matem.unam.mx

Abstract

A tournament is said to be tight whenever every 3-colouring of its vertices using the 3 colours, leaves at least one cyclic triangle all whose vertices have different colours. In this paper, we extend the class of known tight circulant tournaments.

Keywords: Circulant tournament, acyclic disconnection, vertex 3-colouring, 3-chromatic triangle, tight tournament.

1991 Mathematics Subject Classification: 05C20, 05C15.

1 Introduction

Let Z_{2m+1} be the set of integers $\operatorname{mod} 2m+1$. If J is a nonempty subset of $Z_{2m+1}\setminus\{0\}$ such that $|\{j,-j\}\cap J|=1$ for every $j\in Z_{2m+1}\setminus\{0\}$, then the circulant tournament $\overrightarrow{C}_{2m+1}(J)$ is defined by $V(\overrightarrow{C}_{2m+1}(J))=Z_{2m+1}$, $A(\overrightarrow{C}_{2m+1}(J))=\{(i,j)\colon i,j\in Z_{2m+1} \text{ and } j-i\in J\}$. Finally, for $S\subseteq I_m$, $\overrightarrow{C}_{2m+1}\langle S\rangle$ will denote the circulant tournament $\overrightarrow{C}_{2m+1}(J)$ where $J=(I_m\cup (-S))\setminus S$ and $I_m=\{1,2,\ldots,m\}\subseteq Z_{2m+1}$.

In [5], the acyclic disconnection $\overrightarrow{\omega}(D)$ (resp. the \overrightarrow{C}_3 -free disconnection $\overrightarrow{\omega}_3(D)$) of a digraph D, was defined to be the maximum possible number of

connected components of a digraph obtained from D by deleting an acyclic set of arcs (resp: a \overrightarrow{C}_3 -free set of arcs). It was proved there [5, Theorem 2.4] that $\overrightarrow{\omega}_3^+(D) = \overrightarrow{\omega}_3(D) + 1$ is the minimum number r such that every r-colouring of V(D) using all the colours, leaves at least one heterochromatic cyclic triangle (i.e., a cyclically oriented triangle whose vertices are coloured with 3 different colours). Some related topics are considered in [6].

In [2], the heterochromatic number of a 3-graph (V,E) (hypergraph, all whose edges have cardinality 3) was defined to be the minimum number of colours r such that every vertex r-colouring using all the colours leaves at least one heterochromatic 3-edge; 3-graphs with heterochromatic number 3 were called tight. Tight 3-graphs have been studied in [1, 2, 3].

As remarked in [5], if T is any tournament, $\overrightarrow{\omega}_3^+(T)$ is just the heterochromatic number of the 3-graph $H_3(T)=(V(T),\tau_3(T))$ where $\tau_3(T)=\{S\subseteq V(T):T[S]\cong\overrightarrow{C}_3\}$. We consequently define a tournament T to be tight whenever $\overrightarrow{\omega}_3^+(T)=3$, namely when every 3-colouring of its vertices using the 3 colours, leaves at least one heterochromatic cyclic triangle (cyclic triangle all whose vertices have different colours).

It was proved in [5, Theorem 4.11] that for $m \geq 2$, $\overrightarrow{C}_{2m+1}\langle s \rangle$ is tight provided $s \neq 2$.

In this paper, we prove that if $1 \le s_1 < s_2 \le m$ then $\overrightarrow{\omega}_3^+(\overrightarrow{C}_{2m+1}\langle s_1, s_2\rangle)$ is tight for all but a small set of pairs (s_1, s_2) (Theorem 8) and the exceptional pairs are determinated.

2 Preliminaries

We give here some definitions apart from those given in the Introduction. If D is a digraph, V(D) and A(D) (or simply A) will denote the sets of vertices and arcs of D respectively. If $\gamma = (0, 1, ..., m)$ is a directed cycle then we denote by (i, γ, j) the ij-directed path contained in γ , and by $\ell(i, \gamma, j)$ its length. A vertex r-colouring of a digraph is said to be full if it uses the r colours. A heterochromatic cyclic triangle (h.c. triangle) is a cyclic triangle whose vertices are coloured with 3 different colours. For general concepts we refer the reader to [4].

We will need the following two Lemmas:

Lemma 1. Let f be a vertex k-colouring of the circulant tournaments $C_{2m+1}(J)$ which leaves no h.c. triangle. If α is either an automorphism or an antiautomorphism of $C_{2m+1}(J)$ then $f.\alpha$ leaves no h.c. triangle.

Lemma 2. If the circulant tournament $C_{2m+1}(J)$ has a full vertex 3-colouring f which leaves no h.c. triangle then it has another such 3-colouring f' such that 0 and m+1 belong to different chromatic classes. Moreover, if f' belongs to a third chromatic class of f', then there is another 3-colouring f'' leaving no h.c. triangle and such that f'0, f'1 and f'2 and f'3 to different chromatic classes of f''3.

Proof. $C_{2m+1}(J)$ contains two vertices i and i+m+1 belonging to different chromatic classes of f. Let α be an automorphism of $C_{2m+1}(J)$ such that $\alpha(0) = i$ and $\alpha(m+1) = i+m+1$, take $f' = f.\alpha$ and apply Lemma 1. To prove the second part let β the antiautomorphism defined by $\beta(j) = -j+m+1$, take $f'' = f'.\beta$ and apply Lemma 1.

Remark 1. In what follows, when we refer the reader to Lemma 2, we are thinking of the antiautomorphism β .

In [2] Neumann-Lara proved the two following results:

Theorem 1 [2]. Every full vertex 3-colouring of the circulant tournaments, $\overrightarrow{C}_{2n+1}(I_n)$ and $\overrightarrow{C}_{2n+1}\langle s \rangle$ with $(2n+1,s) \neq (9,2)$ leaves an h.c. triangle. Moreover $\overrightarrow{w}^+(\overrightarrow{C}_9\langle 2 \rangle) = 4$.

Theorem 2 [2]. There exists a full vertex 3-colouring of the following circulant tournaments which leaves no h.c. triangle: $\overrightarrow{C}_9\langle 2 \rangle$, $\overrightarrow{C}_3[\overrightarrow{C}_5(1,2)]$, and $\overrightarrow{C}_5(1,2)[\overrightarrow{C}_3]$. Moreover for each of these tournaments $\overrightarrow{w}_3^+ = 4$.

Theorem 3. Every full vertex 3-colouring of the following circulant tournaments leaves an h.c. triangle: $\overrightarrow{C}_5\langle 1,2\rangle$, $\overrightarrow{C}_7\langle 1,2\rangle$, $\overrightarrow{C}_7\langle 1,3\rangle$, $\overrightarrow{C}_7\langle 2,3\rangle$, $\overrightarrow{C}_9\langle 1,2\rangle$, $\overrightarrow{C}_9\langle 1,3\rangle$, $\overrightarrow{C}_9\langle 2,4\rangle$, $\overrightarrow{C}_9\langle 3,4\rangle$, $\overrightarrow{C}_{11}\langle 1,5\rangle$, $\overrightarrow{C}_{11}\langle 2,3\rangle$, $\overrightarrow{C}_{11}\langle 2,5\rangle$, $\overrightarrow{C}_{11}\langle 3,5\rangle$, $\overrightarrow{C}_{11}\langle 4,5\rangle$, $\overrightarrow{C}_{13}\langle 2,3\rangle$, $\overrightarrow{C}_{13}\langle 2,4\rangle$, $\overrightarrow{C}_{13}\langle 3,6\rangle$ and $\overrightarrow{C}_{13}\langle 5,6\rangle$.

Proof. The proof will follow from Lemma 1 and Theorem 1 by applying an automorphism to each circulant tournament ennounced in Theorem 3 which transforms it in some circulant tournament considered in Theorem 1. Along the proof of Theorem 3 and Theorem 4. We will write $D_1 \stackrel{i}{\longrightarrow} D_2$ to mean that the function $f_i(x) = ix$ is an isomorphism from D_1 onto D_2 . $\overrightarrow{C}_5\langle 1,2\rangle \stackrel{-1}{\longrightarrow} \overrightarrow{C}_5\langle 1,2\rangle; \overrightarrow{C}_7\langle 1,2\rangle \stackrel{-1}{\longrightarrow} \overrightarrow{C}_7\langle 3\rangle; \overrightarrow{C}_7\langle 1,3\rangle \stackrel{-3}{\longrightarrow} \overrightarrow{C}_7\langle 1,3\rangle; \overrightarrow{C}_7\langle 2,3\rangle \stackrel{-1}{\longrightarrow} \overrightarrow{C}_7\langle 1,2\rangle \stackrel{-2}{\longrightarrow} \overrightarrow{C}_9\langle 1,2\rangle \stackrel{-2}{\longrightarrow} \overrightarrow{C}_9\langle 1,4\rangle;$

 $\overrightarrow{C}_{9}\langle 3,4\rangle \xrightarrow{2} \overrightarrow{C}_{9}(I_{4}); \overrightarrow{C}_{11}\langle 1,5\rangle \xrightarrow{8} \overrightarrow{C}_{11}\langle 1\rangle; \overrightarrow{C}_{11}\langle 2,3\rangle \xrightarrow{3} \overrightarrow{C}_{11}(I_{5}); \overrightarrow{C}_{11}\langle 2,5\rangle \xrightarrow{4} \overrightarrow{C}_{11}(I_{5}); \overrightarrow{C}_{11}\langle 3,5\rangle \xrightarrow{6} \overrightarrow{C}_{11}\langle 5\rangle; \overrightarrow{C}_{11}\langle 4,5\rangle \xrightarrow{2} \overrightarrow{C}_{11}\langle 5\rangle; \overrightarrow{C}_{13}\langle 2,3\rangle \xrightarrow{-2} \overrightarrow{C}_{13}\langle 2\rangle; \overrightarrow{C}_{13}\langle 2,4\rangle \xrightarrow{5} \overrightarrow{C}_{13}\langle 1\rangle; \overrightarrow{C}_{13}\langle 3,6\rangle \xrightarrow{4} \overrightarrow{C}_{13}\langle 5,6\rangle \xrightarrow{2} \overrightarrow{C}_{13}\langle 5\rangle; \overrightarrow{C}_{13}\langle 5,6\rangle \xrightarrow{2} \overrightarrow{C}_{13}\langle 5\rangle.$

Theorem 4. There exists a full vertex 3-colouring of the following circulant tournaments which leaves an h.c. triangle: $\overrightarrow{C}_9\langle 2,3\rangle$, $\overrightarrow{C}_9\langle 1,4\rangle$, $\overrightarrow{C}_{15}\langle 2,5\rangle$ and $\overrightarrow{C}_{15}\langle 3,4\rangle$. Moreover $\overrightarrow{w}_3^+=4$ for each of these tournaments.

Proof. The proof will follow from Lemma 1 and Theorem 2 by aplying: Consider the automorphism $\varphi \colon \overrightarrow{C}_9\langle 2, 3 \rangle \to \overrightarrow{C}_9\langle 2 \rangle$ defined as follows: $\varphi(0) = 0$, $\varphi(2) = 2$, $\varphi(3) = 6$, $\varphi(4) = 1$, $\varphi(5) = 8$, $\varphi(6) = 3$, $\varphi(7) = 7$ and $\varphi(8) = 5$; $\overrightarrow{C}_9\langle 1, 4 \rangle \xrightarrow{-1} \overrightarrow{C}_9\langle 2, 3 \rangle \xrightarrow{\varphi} \overrightarrow{C}_9\langle 2 \rangle$; because of [2] $\overrightarrow{C}_{15}\langle 2, 5 \rangle \cong \overrightarrow{C}_3[\overrightarrow{C}_5(I_2)]$ and $\overrightarrow{C}_{13}\langle 3, 4 \rangle \cong \overrightarrow{C}_5[I_2)[\overrightarrow{C}_3]$.

3 Main Result

Theorem 5. Every full vertex 3-colouring of the circulant tournament $\overrightarrow{C}_{2n+1}\langle s_1, s_2 \rangle$ such that $1 \leq s_1 < s_2 \leq n$ and $\overrightarrow{C}_{2n+1}\langle s_1, s_2 \rangle \not\in \left\{\overrightarrow{C}_{15}\langle 3, 4 \rangle, \overrightarrow{C}_{15}\langle 2, 5 \rangle, \overrightarrow{C}_{9}\langle 2, 3 \rangle, \overrightarrow{C}_{9}\langle 1, 4 \rangle\right\}$ leaves an h.c. triangle.

Proof. Consider any full vertex 3-colouring of $D = \overrightarrow{C}_{2n+1}\langle s_1, s_2 \rangle$ as in the hypothesis with colors red, blue and white and denote by R, B and W (respectively) the chromatic classes. Without loss of generality, we can assume $n+1 \in R$ and $0 \in B$. Along the proof we will denote $(i \notin W, (i, j, k))$ to mean that we can assume the vertex i is not white because if the vertex i is white, then we have the h.c. triangle (i, j, k) and we are done.

The sequence $\gamma_1 = (0, 1, 2, \dots, 2n, 0)$; will be a directed cycle when $s_1 \neq 1$ and the sequence $\gamma_2 = (0, 2n, 2n - 1, 2n - 2, \dots, 0)$ a directed cycle when $s_1 = 1$.

We will make the proof by considering several cases

Case 1. Let $2 \le s_1 < s_2 \le n-1$ and there exists $i \in (0, \gamma, n+1) \cap W$ such that $\{(0, i), (i, n+1)\} \subseteq A(D)$.

Clearly, in this case (0, i, n + 1) is an h.c. triangle.

Case 2. Let $2 \le s_1 < s_2 \le n-1$ and the vertex $s_1 \in W$. (notice $(s_1,0) \in A(D)$).

Subcase 2.a. Assume $s_1 + s_2 < n$.

Let $j \in (n+1, \gamma, 0)$ such that $\ell(j, \gamma, 0) = s_1$.

Since $s_1 + s_2 < n$ we have $\{(s_1, n+1), (n+1, j), (j, s_1)\} \subseteq A(D)$. $j \in W : (j \notin R, (j, s_1, 0)), (j \notin B, (j, s_1, n+1))$. Each vertex t with $t \in (0, \gamma, s_1) - \{0, s_1\}$ is blue: $(t \notin W, (t, n+1, 0)), (t \notin R, (t, s_1, 0))$.

Now we consider several possibilities:

If s_1 and s_2 are not consecutives $(s_2 \neq s_1 + 1)$ then (j, 1, n + 1) is an h.c. triangle.

If s_1 and s_2 are consecutives $(s_2 = s_1 + 1)$, we have: Let $s_1 > 2$.

 $2 \in (0, \gamma, s_1) - \{0, s_1\}$, so $2 \in B$ and (2, n + 1, j) is an h.c. triangle.

When $s_1 = 2$ we have $s_2 = 3$ and consider $k \in (n + 1, \gamma, 0)$ such that $\ell(k, \gamma, 0) = s_2$; since $s_1 + s_2 < n$ we have $\{(k, s_1), (0, k)\} \subseteq A(D)$, and $(k \notin R, (k, s_1, 0))$.

If $(n+1,k) \in A$ then $(k \notin B, (k,s_1,n+1))$. Hence $k \in W$ and (k,1,n+1) is an h.c. triangle. When $(k,n+1) \in A$ we have $\ell(n+1,\gamma,k) = s_2$; so $2s_2 = n$, n = 6 and $D \cong C_{13}\langle 2, 3 \rangle$.

Subcase 2.b. Assume $s_1 + s_2 \ge n + 1$.

Let $k \in (0, \gamma, n+1)$ such that $\ell(k, \gamma, n) = s_2$ (notice $(n, k) \in A$), Since $s_1 + s_2 \ge n + 1$ and $s_2 < n$ we have $k \in (0, \gamma, s_1) - \{0, s_1\}$; k is blue: $(k \notin R, (k, s_1, 0)), (k \notin W, (k, n+1, 0))$; n is blue: $(n \notin R, (n, k, s_1))$ when $(s_1, n) \in A$; and $(n, s_1, 0)$ when $(n, s_1) \in A$, $(n \notin W, (n, n+1, 0))$.

Now we will prove that we can assume $(s_1, n+1) \in A$. Suppose $(n+1, s_1) \in A$; hence $\ell(s_1, \gamma, n+1) \in \{s_1, s_2\}$. When $(s_1, n) \in A$, $(n+1, s_1, n)$ is an h.c. triangle. So $(n, s_1) \in A$, $\ell(s_1, \gamma, n+1) = s_2, s_2 = s_1 + 1$ and $s_2 + s_1 = n + 1$. Now, when $s_1 = 2$ we have $s_2 = 3, n + 1 = 5$ and $D \cong C_9 \langle 2, 3 \rangle$. And when $s_1 > 2$ we consider, n-1; $n-1 \in W$: $(n-1 \notin R, (n-1, n, s_1)), (n-1 \notin B, (n-1, n+1, s_1))$ (notice $s_1 > 2$). And we have (n-1, n+1, 0) an h.c. triangle. So we will assume $(s_1, n+1) \in A$. Now $k+1 \in W$: $(k+1 \notin R, (k+1, s_1, 0)), (k+1 \notin B, (k+1, s_1, n+1)),$ (notice $k+1 \neq s_1$ since $(s_1, n+1) \in A$ and $(n+1, k+1) \in A$).

If $(k+1,n) \in A$, then (k+1,n,n+1) is an h.c. triangle, so we will assume $(n,k+1) \in A$ (notice that $\ell(k+1,\gamma,n) = s_1, (n+1,k+2) \in A$ and $k+2 \neq s_1$).

Finally, consider $k + 2 : (k + 2 \notin R, (k + 2, s_1, 0)), (k + 2 \notin B, (k + 2, s_1, n + 1))$; hence k + 2 is white and (k + 2, n, n + 1) is an h.c. triangle.

Subcase 2.c. $s_1 + s_2 = n$.

First assume $s_1 \neq 2$.

Let $k, t \in (n + 1, \gamma, 0)$ such that $\ell(k, \gamma, 0) = s_2$ and $\ell(t, \gamma, s_1) = s_2$. $k \in B : (k \notin R, (k, s_1, 0)), (k \notin W, (k, n + 1, 0)); n + 2 \in B : (n + 2 \notin R, (n + 2, k, s_1)), (n + 2 \notin W, (n + 2, k, n + 1)); t \in B : (t \notin R, (t, k, s_1)), (t \notin W, (t, k, n + 1) \text{ when } (n + 1, t) \in A \text{ and } (t, n + 1, 0) \text{ when } (t, n + 1) \in A).$ (Notice that $(t, n + 1) \in A$ implies $(0, t) \in A$ because $s_1 + s_2 + n$); also $1 \in B : (1 \notin R, (1, s_1, 0)), (1 \notin W, (1, n + 1, 0)).$

Now we consider two possibilities:

When s_1 and s_2 are not consecutives $(s_2 \neq s_1 + 1)$ we consider 2n; $(2n \notin B, (2n, s_1, n + 1))$, (Notice $(n + 1, 2n) \in A$ because $s_1 \geq 2$ and $s_1 + s_2 = n$, so $s_2 \leq n - 2$), $(2n \notin R, (2n, s_1, n + 1))$ (Notice $(n + 2, 2n) \in A$ because $\{s_1, s_2\} \neq \{2, n - 2\}$). Hence 2n is white and then (2n, 1, n + 1) is an h.c. triangle, (notice again that $(2n, 1) \in A$ because $s_1 \neq 2$).

When s_1 and s_2 are consecutives $(s_2 = s_1 + 1)$, observe that when $s_1 = 2$ we have $s_2 = 3$ and $D \cong \overrightarrow{C}_{11}\langle 2, 3 \rangle$. So we will assume $s_1 > 2$, and consider 2n-1; $(2n-1 \not\in B, (2n-1, s_1, n+1))$ (notice $(n+1, 2n-1) \in A$ because $s_1 \neq 2$ and hence $s_2 \neq n-2$), $(2n-1 \not\in B, (2n-1, s_1, n+2))$ (notice that we can assume $(n+2, 2n-1) \in A$ because if $(2n-1, n+2) \in A$ then $s_2 = n-3$, $s_1 = 3$, $s_2 = 4$, n=7 and $D \cong \overrightarrow{C}_{15}\langle 3, 4 \rangle$). Hence 2n-1 is white and then (2n-1, 1, n+1) is an h.c. triangle (notice that we can assume $(2n-1, 1) \in A$ because when $(1, 2n-1) \in A$ we have $s_1 = 3$, $s_2 = n-3$, $s_2 = 4$, n=7 and $D \cong C_{15}\langle 3, 4 \rangle$).

Now assume $s_1 = 2, s_2 = n - 2$.

When $s_2 = s_1 + 1$ we obtain $D \cong \overrightarrow{C}_{11}\langle 2, 3 \rangle$; so we will assume $s_2 \neq s_1 + 1$. $n \in B : (n \notin R, (n, 2, 0)), (n \notin W, (n, n + 1, 0); 1 \in B : (1 \notin R, (1, 2, 0)));$ $(1 \notin W, (1, n + 1, 0)); 3 \in B : (3 \notin R, (3, 1, 2)), (3 \notin W, (3, n, n + 1));$ $n + 3 \in B : (n + 3 \notin R, (n + 3, 2, 0)), (n + 3 \notin W, (n + 3, n + 1, 0));$ $n + 2 \in B : (n + 2 \notin R, (n + 2, 1, 2)), (n + 2 \notin W, (n + 2, n, n + 1));$ $4 \in B : (4 \notin R, (4, 2, 3)), (4 \notin W, (4, n + 1, n + 2)); 2n \in R : (2n \notin B, (2n, 2, n + 1))$ (notice that $(2n, 2) \in A$ because $s_1 = 2$ and $s_2 \neq s_1 + 1$), $(2n \notin W, (2n, 4, n + 1))$ (notice that we can assume $(2n, 4) \in A$, because when $(4, 2n) \in A$ we obtain $s_2 = 5, n - 2 = 5, n = 7$ and $D \cong \overrightarrow{C}_{15}\langle 2, 5 \rangle$). Finally consider n - 3; first notice that $(n - 3, 2n) \in A$ because $\ell(2n, \gamma, n - 3) = n - 2$ and $(0, n - 3) \in A$ because $s_2 \neq s_1 + 1$. We have $(n - 3 \notin W, (n - 3, 2n, 0))$.

We can assume $(2, n-3) \in A$ because if $(n-3, 2) \in A$ then $\ell(2, \gamma, n-3) = s_1$, $s_2 = 2s_1 + 1$ and $D \cong \overrightarrow{C}_{15}\langle 2, 5 \rangle$. So $(n-3 \notin R, (n-3, n, 2))$; we conclude that n-3 is blue and then (n-3, 2n, 2) is an h.c. triangle (notice $(2n, 2) \in A$ because $s_2 \neq s_1 + 1$).

Case 3. Let $2 \le s_1 < s_2 \le n-1$ and the vertex $n+1-s_1 \in W$. This case follows directly from Case 2 by applying Lemma 2.

Case 4. Let $2 \le s_1 < s_2 \le n-1$ and the vertex $s_2 \in W$. (notice $(s_2,0) \in A$).

Subcase 4.a. Assume the hypothesis on Case 4 and $s_1 + s_2 < n$. First we prove that we can assume $(s_2, n+1) \in A$. Suppose $(n+1, s_2) \in A$, then $\ell(s_2, \gamma, n+1) = s_2$ (since $s_1 + s_2 < n$), $2s_2 = n+1$ and $s_2 \neq s_1 + 1$ ($s_2 = s_1 + 1$ implies $s_1 + s_2 = n$).

 $n \in R$: $(n \notin W, (0, n, n + 1)), (n \notin B, (n, n + 1, s_2))$ (notice that $(s_2, n) \in A$ because $s_1 \neq s_2 - 1$).

 $s_2-1 \in W$: $(s_2-1 \notin R, (s_2-1, s_2, 0))$ (notice $s_1 \neq s_2-1$), $(s_2-1 \notin B, (s_2-1, s_2, n))$. So $(0, s_2-1, n+1)$ is an h.c. triangle.

We will assume $(s_2, n+1) \in A$.

Let $j \in (n + 1, \gamma, 0)$ such that $\ell(j, \gamma, 0) = s_1$; since $s_1 + s_2 < n$ we have $\{(j, s_2), (n + 1, j)\} \subseteq A$.

 $j \in W: (j \notin R, (j, s_2, 0)), (j \notin B, (j, s_2, n + 1)).$

Now consider s_1 , since $s_1 + s_2 < n$ we have $\{(j, s_1), (s_1, n+1)\} \subseteq A$. and hence $(s_1 \notin R, (s_1, 0, j)), (s_1 \notin B, (s_1, n+1, j))$. We conclude $s_1 \in W$ and we are in Subcase 2.a.

Subcase 4.b. Assume $s_1 + s_2 \ge n + 1$.

Notice that when $s_1+s_2=n+1, \ s_2=n+1-s_1, \ \text{hence} \ n+1-s_1\in W$ and we are in Case 3. So we will assume $s_1+s_2\geq n+2$. Consider $n+1-s_1$; we can assume $n+1-s_1\not\in W$ because when $n+1-s_1\in W$ we are in Case 3; $(n+1-s_1\not\in B, (n+1-s_1,s_2,n+1))$; hence $n+1-s_1\in R$. So when $(0,n+1-s_1)\in A$ we have $(n+1-s_1,s_2,0)$ an h.c. triangle. Then we can assume and we will assume $(n+1-s_1,0)\in A$, and then $2s_1=n+1$. Consider $n+1-s_2$; $n+1-s_2\in R$: $(n+1-s_2\not\in W, (n+1-s_2,n+1-s_1,0)), (n+1-s_2\not\in B, (n+1-s_2,s_2,n+1))$ when $(s_2,n+1-s_2)\in A$). So when $(n+1-s_2,s_2)\in A$ and $(n+1-s_2,n+1-s_1,s_2)$ when $(n+1-s_2,s_2)\in A$ we have $(n+1-s_2,s_2,0)$ an h.c. triangle (notice $(0,n+1-s_2)\in A$ since $2s_1=n+1$ and $s_1+s_2\geq n+2$ imply $n+1-s_2\in (0,\gamma,n+1-s_1=s_1)$). Then we can assume and we will assume $(s_2,n+1-s_2)\in A$.

Notice that s_1 and s_2 are not consecutives. When $s_2 = s_1 + 1$ we have $(n+1-s_2)+1=n+1-s_1$; we are assuming $(n+1-s_1,0) \in A$ hence $l(0,\gamma,n+1-s_1)=s_1$ and $(s_2,n+1-s_2) \in A$ hence $l(n+1-s_2,s_2)=s_1$ and we conclude $2s_1+1=s_2$, then $s_1+1=2s_1+1$ and $s_1=0$ which is impossible.

Finally, consider s_2-1 since $s_2 \neq s_1+1$ we have $s_2-1 \neq n+1-s_1$ (notice $n+1-s_1=s_1$); $(s_2-1 \notin W, (s_2-1, n+1, 0)), (s_2-1 \notin B, (s_2-1, s_2, n+1-s_2))$ (notice $(n+1-s_2, s_2-1) \in A$ because $l(n+1-s_2, s_2)=s_1$). Hence s_2-1 is red and then $(s_2-1, s_2, 0)$ is an h.c. triangle.

Subcase 4.c. $s_1 + s_2 = n$.

First assume $s_1 \neq 2$.

Let $k \in (n+1, \gamma, 0)$ such that $l(k, \gamma, 0) = s_1$, notice $(0, k) \in A$. $k \in B$: $(k \notin R, (k, s_2, 0)), (k \notin W, (k, n+1, 0))$ (notice $(k, n+1) \in A$ because $s_1 + s_2 = n$).

When $s_2 = s_1 + 1$ we consider k - 1; $(k - 1 \notin B, (k - 1, n + 1, s_2)), (k - 1 \notin R, (k - 1, k, s_2))$, hence k - 1 is white and then (k - 1, n + 1, 0) is an h.c. triangle (notice that $s_2 = s_1 + 1$ and $s_1 + s_2 = n$ imply $\{(0, k - 1), (k - 1, n + 1)\} \subseteq A$).

So we will assume $s_2 \neq s_1 + 1$.

 $n \in B: (n \notin W, (0, n, n + 1)), (n \notin R, (n, s_2, 0)); s_2 - 1 \in B: (s_2 - 1 \notin W, (s_2 - 1, n + 1, 0)) \text{ when } (s_2 - 1, n + 1) \in A \text{ and } (s_2 - 1, n, n + 1) \text{ when } (n + 1, s_2 - 1) \in A); k - 1 \in B: (k - 1 \notin W, (k - 1, n, n + 1)) \text{ (notice that } (k - 1, n) \in A \text{ because } s_1 + s_2 = n), (k - 1 \notin R, (k - 1, n, s_2)).$

Finally, consider k+1; $(k+1 \notin B, (k+1, s_2, n+1))$ (notice $(s_2, n+1) \in A$ because $s_1 + s_2 = n$ and $s_2 \neq s_1 + 1$), $(k+1 \notin W, (k+1, s_2 - 1, n+1))$

(We can assume $(s_2-1,n+1) \in A$ because when $(n+1,s_2-1) \in A$ we have $(n+1,s_2-1,s_2)$ an h.c. triangle, and we can assume $(k+1,s_2-1) \in A$ because when $(s_2-1,k+1) \in A$ we have $l(k+1,\gamma,s_2-1)=s_2,s_1=2$ and $s_2=n-2$). We conclude k+1 is red and then $(k+1,s_2,k-1)$ is an h.c. triangle. $((k-1,k+1) \in A$ because $s_1 \neq 2$).

Now assume $s_1 = 2$ (hence $s_2 = n - 2$).

 $n \in W$: $(n \notin R, (n, n-2, 0)), (n \notin W, (n, n+1, 0)).$

 $1 \in B$: $(1 \notin R, (1, n-2, 0))$, (we can assume $(1, n-2) \in A$ because when $(n-2,1) \in A$ we have $s_2 = s_1 + 1$, $s_2 = 3$, $s_1 = 2$ and $D \cong \overrightarrow{C}_{11}\langle 2, 3 \rangle$), $(1 \notin W, (1, n+1, 0))$. $n+3 \in B$: $(n+3 \notin R, (n+3, 1, n-2))$ (We can assume $(n-2, n+3) \in A$ because when $(n+3, n-2) \in A$ we have $s_2 = 5$, $s_1 = 2$ and $D \cong \overrightarrow{C}_{15}\langle 2, 5 \rangle$. And we can assume $(n+3, 1) \in A$ because when $(1, n+3) \in A$ we have $s_2 = n-1$ but we are assuming $s_2 = n-2$). $2n \in W$:

 $(2n \not\in R, (2n, n-2, n+3))$ (We can assume $(n+3, 2n) \in A$ because when $(2n, n+3) \in A$ we have $s_1 = n-3 = 2, n=5$ and $D \cong \overrightarrow{C}_{11}\langle 2, 3\rangle$). Finally, consider n-4; $(n-4 \not\in R, (n-4, n, n-2))$ (We can assume $(n-4, n) \in A$ because when $(n, n-4) \in A$ we have, $s_2 = 4, n=6$ and $D \cong \overrightarrow{C}_{13}\langle 2, 4\rangle$), $(n-4 \not\in W, (n-4, n+1, 0))$ (We can assume $(n-4, n+1) \in A$ because otherwise we obtain $s_2 = 5, s_1 = 2, n=7$ and $D \cong \overrightarrow{C}_{15}\langle 2, 5\rangle$. And we can assume $(0, n-4) \in A$ because in other case $s_1 = n-4 = 2, n=6$ and $D \cong C_{13}\langle 2, 4\rangle$. Hence n-4 is blue and then (n-4, n+1, 2n) is an h.c. triangle. (We can assume $(2n, n-4) \in A$ because when $(n-4, 2n) \in A$ we have $s_1 = n-3, n=5$ and $D \cong \overrightarrow{C}_{11}\langle 2, 3\rangle$).

Case 5. When $2 \le s_1 < s_2 \le n-1$ and the vertex $n+1-s_2 \in W$. This case follows directly from Case 4 by applying Lemma 2.

Case 6. When $2 \le s_1 < s_2 \le n-1$ and there exists a vertex $i \in (n+1,\gamma,0)$, $i \in W$ such that $\ell(i,\gamma,0) \in \{s_1,s_2\}$. Since $\ell(i,\gamma,0) = s_1$ or $\ell(i,\gamma,0) = s_2$ we have $(0,i) \in A$. We will assume $(n+1,i) \in A$ because when $(i,n+1) \in A$ we have (i,n+1,0) an h.c. triangle.

Observe now that we can assume $n \notin R$. Because when n is red, considering the automorphism $f: V(D) \to V(D)$ such that f(x) = x + n + 1 and interchanging the colors blue and red we obtain the Case 3 when $\ell(i, \gamma, 0) = s_1$ and the Case 5 when $\ell(i, \gamma, 0) = s_2$. And by Lemma 1 we obtain an h.c. triangle.

 $n \in B$; it follows from the observation above and the fact $(n \notin W, (n, n + 1, 0))$.

We will assume $(n, i) \in A$. Because when $(i, n) \in A$ we have (i, n, n+1) an h.c. triangle.

Now we consider two possible cases:

Subcase 6.a. $s_1 + s_2 \le n$.

Since $s_1 + s_2 \le n$ we have $\{(s_1, n + 1), (i, s_1)\} \subseteq A$.

Consider s_1 ; we can assume $s_1 \notin W$ because when $s_1 \in W$ we are in Case 2, $(s_1 \notin R, (s_1, 0, i))$; hence s_1 is blue and then $(s_1, n + 1, i)$ is an h.c. triangle.

Subcase 6.b. Assume $s_1 + s_2 \ge n + 1$.

When $\ell(i, \gamma, 0) = s_2$ or $\ell(i, \gamma, 1) = s_2$ we consider $j \in V(\gamma)$ such that $\ell(j, \gamma, i) = s_1$; since $s_1 + s_2 \ge n + 1$, $(n, i) \in A$ and $(n + 1, i) \in A$ we have $j \in (1, \gamma, n - 1)$. If $j \in W$ then we obtain some of the cases 1 to 5 and we

are done, $(j \notin R, (j, n, i))$ (notice $(i, j) \in A$ because $\ell(j, \gamma, i) = s_1$), hence j is blue and then (j, n + 1, i) is an h.c. triangle. So we have $\ell(i, \gamma, 0) = s_1$ and $\ell(i, \gamma, 1) \neq s_2$ (in particular $s_2 \neq s_1 + 1$ and $(i, 1) \in A$).

Now we will prove that we can assume $(1,n) \in A$. When $(n,1) \in A$ we have $s_1 = n - 1$ or $s_2 = n - 1$ but since $s_1 < s_2 \le n - 1$ we conclude $s_2 = n - 1$. Since $s_2 = n - 1$ we have $(i, i + n + 2) \in A$. When $\{(i + n + 2, n), (i + n + 2) \in A\}$ (i+n+2,n+1) $\subseteq A$ we consider i+n+2; since $i+n+2 \in (0,\gamma,n-1)$ we can assume $i + n + 2 \notin W$ (because when $i + n + 2 \in W$ we are in some of the cases 1 to 5 and we are done), $(i + n + 2 \notin B, (i + n + 2, n + 1, i))$ hence $i + n + 2 \in R$ and then (i + n + 2, n, i) is an h.c. triangle. So, we have $\ell(i+n+2,\gamma,n)=s_1$ or $\ell(i+n+2,\gamma,n+1)=s_1$; in any case we have $\ell(i+n,\gamma,n)\neq s_1$ and $\ell(i+n,\gamma,n+1)\neq s_1$. Observe that $\ell(i+n,\gamma,n)\neq s_2$ because when $\ell(i+n,\gamma,n)=s_2=n-1$ we have i+n=n and then $s_1=n-1$ which is impossible because $s_1 < s_2$. Also observe that $\ell(i+n, \gamma, n+1) \neq s_2$ because when $\ell(i+n,\gamma,n+1)=s_2=n-1$ we obtain i+n=2 and $s_1=n-2$ but we have $s_2 \neq s_1 + 1$. We conclude that $\{(i+n,n), (i+n,n+1)\} \subseteq A$. Now consider i+n; we can assume $i+n \notin W$ (see cases 1 to 5), $(i+n \notin W)$ R, (i+n, n, i) hence i+n is blue and then (i+n, n+1, i) is an h.c. triangle. So we will assume $(1, n) \in A$.

Finally, consider 1; $(1 \notin W, (0, 1, n + 1)), (1 \notin B, (1, n + 1, i))$ hence $1 \in R$ and then (1, n, i) is an h.c. triangle.

Case 7. Let $2 \le s_1 < s_2 \le n-1$ and; $n+1+s_1 \in W$ or $n+1+s_2 \in W$. This case follows directly from Case 6 by applying Lemma 2.

Case 8. Let $2 \le s_1 < s_2 \le n-1$ and there exists $j \in (n+1, \gamma, 0)$ such that $j \in W$, and $\{(n+1, j), (j, 0)\} \subseteq A$.

First we will prove that in this case we can assume $(n, j) \in A$. Suppose $(j, n) \in A$; $(n \notin B, (n, n + 1, j)), (n \notin W, (n, n + 1, 0))$. Hence n is red and $\ell(n, \gamma, j) \in \{s_1, s_2\}$. And now considering the automorphism $f: V(D) \to V(D)$ such that f(t) = t + n + 1 and interchanging the colors red and blue we obtain Case 3 or Case 5 and we are done. So we will assume $(n, j) \in A$.

Observe that we can assume $(j, 1) \in A$.

When $(1,j) \in A$ we have $(1 \notin R, (1,j,0))$, moreover $(1 \notin W, (1,n+1,0))$. Hence $1 \in B$ and now considering the automorphism $f: V(D) \to V(D)$ such that f(t) = t+n and interchanging the colors blue and red we obtain Case 3 or Case 5 and we are done. So we will assume $(j,1) \in A$. $n \in B$; $(n \notin W, (n, n+1,0)), (n \notin R, (n,j,0))$. $1 \in R$; $(1 \notin W, (1, n + 1, 0)) (1 \notin B, (1, n + 1, j)).$

So when $(1, n) \in A$ we have (1, n, j) an h.c. triangle. Then we will assume $(1, n) \in A$. Hence $s_2 = n - 1$.

Since $s_2 = n - 1$, and $n \neq s_1$, $n \neq s_2$ we have;

 $\{(j+n-1,j),(j,j+n),(j+n+1,j),(j,j+n+2)\}\subseteq A.$ Since $\{j+n,j+n+1\}\subseteq V(1,\gamma,n)$ we can assume $\{j+n,j+n+1\}\cap W=\emptyset$ because if $\{j+n,j+n+1\}\cap W\neq\emptyset$ then we are in some of the Cases 1 to 5 and we are done. We conclude $j+n\not\in W$ and $j+n+1\not\in W$. (i.e., $\{j+n,j+n+1\}\subseteq R\cup B$). When j+n and j+n+1 have different colors we obtain the h.c. triangle (j+n,j+n+1,j) so we can assume they have the same color and we will analyze the two possibilities:

Subcase 8.a. $\{j+n, j+n+1\} \subseteq R$.

In this case we can assume $(j+n+1,0) \in A$ because when $(0,j+n+1) \in A$ we obtain (0,j+n+1,j) an h.c. triangle. Hence $(j+n+1,0) \in A$ and $\ell(0,\gamma,j+n+1) \in \{s_1,s_2\}$.

If $\ell(0, \gamma, j+n+1) = s_1$ then $\{(0, j+n-1), (1, j+n-1)\} \subseteq A$ and we consider j+n-1; $(j+n-1 \notin R, (j+n-1, j, 0)), (j+n-1 \notin B, (j+n-1, j, 1)),$ hence $j+n-1 \in W$ and we are in some of the cases 1 to 5.

If $\ell(0, \gamma, j+n+1) = s_2$ then j+n+1 = n-1 (remember $s_2 = n-1$) and j+n+2 = n which is impossible because $\{(j, j+n+2), (n, j)\} \subseteq A$.

Subcase 8.b. $\{j+n, j+n+1\} \subseteq B$.

In this case, we can assume $(n+1, j+n) \in A$ because when $(j+n, n+1) \in A$ we have (j+n, n+1, j) an h.c. triangle.

Hence $(n+1, j+n) \in A$ and $\ell(j+n, \gamma, n+1) \in \{s_1, s_2\}.$

When $\ell(j+n,\gamma,n+1) = s_1$ we have $\{(j+n+2,n),(j+n+2,n+1)\} \subseteq A$ and we consider $j+n+2;(j+n+2\not\in R,(j+n+2,n,j)),(j+n+2\not\in B,(j+n+2,n+1,j));$ so $j+n+2\in W$ and we are in some of the cases 1 to 5.

When $\ell(j+n,\gamma,n+1)=s_2$ we have j+n=2 (remember $s_2=n-1$) and j+n-1=1 which is impossible because $\{(j+n-1,j),(j,1)\subseteq A.$

Case 9. $s_1 = 1$ and $1 \in W$ (remember we are assuming $n + 1 \in R$, and $0 \in B$).

Subcase 9.a. $s_2 = n$.

In this case (0, n + 1, 1) is an h.c. triangle.

Subcase 9.b. $s_2 = n - 1$.

In this case we will assume $s_2 \neq 2$ because when $s_2 = 2$ we obtain n - 1 = 2 and $D \cong \overrightarrow{C}_7\langle 1, 2 \rangle$.

 $2n \in B$; $(2n \notin R, (2n, 1, 0))$ (notice $(2n, 1) \in A$ because $s_2 \neq 2$), $(2n \notin W, (0, 2n, n + 1))$ (notice $(2n, n + 1) \in A$ because $s_2 = n - 1$).

 $n \in R$; $(n \notin W, (n, 2n, n + 1)), (n \notin B, (n, 1, n + 1))$. Hence (1, 0, n) is an h.c. triangle.

Subcase 9.c. $s_2 = 2$.

In this case we will assume $n \geq 5$ because when n = 2, $D \cong \overrightarrow{C}_5\langle 1, 2 \rangle$, when n = 3, $D \cong \overrightarrow{C}_7\langle 1, 2 \rangle$ and when n = 4, $D \cong \overrightarrow{C}_9\langle 1, 2 \rangle$. Hence we have $\ell(n+1,\gamma,2n-1) \geq 3$, $2n-1 \neq 3$, and $\ell(3,\gamma,n+1) \geq 3$. $2n-1 \in W$; $(2n-1 \notin R, (1,0,2n-1)), (2n-1 \notin B, (n+1,2n-1,1))$.

Consider 3; $(3 \notin R, (3, 1, 0)), (3 \notin W, (3, n + 1, 0))$, hence 3 is blue and then (3, n + 1, 2n - 1) is an h.c. triangle.

Subcase 9.d. $s_2 \notin \{2, n-1, n\}$.

Let $j \in (n+1,\gamma,0)$ be such that $\ell(j,\gamma,0) = s_2$. We will consider two possibilities:

Let $(n+1,j) \in A$.

Since $s_2 \notin \{n-1, n\}$ we have $\{(1, n+1), (j, 1)\} \subseteq A$.

 $j \in W; (j \notin R, (1,0,j)), (j \notin B, (j,1,n+1))$. Now consider 2; $(2 \notin R, (2,1,0)), (2 \notin B, (2,n+1,j))$, hence 2 is white and (2,n+1,0) is an h.c. triangle.

And let $(j, n + 1) \in A$.

In this case we have $j = n + 1 - s_2$, $2s_2 = n$ and $(n + 1 - s_2, 1) \in A$. $j \in B$; $(j \notin R, (j, 1, 0)), (j \notin W, (j, n + 1, 0))$, consider $n + 1 - s_2$; $(n + 1 - s_2 \notin W, (i, j, n + 1 - s_2))$ (remember $s_2 \neq n$), $(n + 1 - s_2 \notin B, (n + 1 - s_2, 1, n + 1))$; hence $n + 1 - s_2$ is read and then $(n + 1 - s_2, 1, 0)$ is an h.c. triangle.

Case 10. $s_1 = 1$ and $n \in W$.

This case follows directly from Case 9 by applying Lemma 2.

Case 11. $s_1 = 1$ and $s_2 \in W$.

Observe that when $s_2 = n$ we obtain (n, 0, n + 1) an h.c. triangle.

And when $s_2 = n - 1$ we can assume $s_2 \neq 2$ (because $s_2 = 2 = n - 1$ implies $D \cong C_7\langle 1, 2 \rangle$); consider n; we can assume $n \notin W$ (because when $n \in W$ we are in Case 10), $(n \notin R, (n, n - 1, 0))$, hence $n \in B$ and (n, n - 1, n + 1) is an h.c. triangle.

So we will assume $2 \le s_2 \le n-2$ and consider two cases:

Subcase 11.a. $s_1 = 1, s_2 \in W, 2 \le s_2 \le n-2 \text{ and } (s_2, n+1) \in A.$ $2n \in W; (2n \notin R, (2n, s_2, 0)), (2n \notin B, (2n, s_2, n+1)) \text{ (notice } (n+1, 2n) \in A \text{ because } s_2 \le n-2.$

 $s_2 + 1 \in W$; $(s_2 + 1 \notin R, (s_2 + 1, s_2, 0), (s_2 + 1 \notin B, (s_2 + 1, n + 1, 2n))$ when $(s_2 + 1, n + 1) \in A$ and $(s_2 + 1, s_2, n + 1)$ when $(n + 1, s_2 + 1) \in A$.

We will assume $(n+1, s_2+1) \in A$ because when $(s_2+1, n+1) \in A$ we have $(s_2+1, n+1, 0)$ an h.c. triangle. And since $s_2+1 \neq n$ we have $\ell(s_2+1, \gamma, n+1) = s_2$, and $2s_2 = n$.

Finally, consider $j \in (n+1,\gamma,0)$ such that $\ell(j,\gamma,0) = s_2; (j \notin W, (j,n+1,0)), (j \notin B, (j,n+1,s_2+1))$, hence $j \in R$ and then $(j,s_2,0)$ is an h.c. triangle.

Subcase 11.b. $s_1 = 1, s_2 \in W, 2 \leq s_2 \leq n-2$ and $(n+1, s_2) \in A$. Since $s_2 \neq n$ we have that $\ell(s_2, \gamma, n+1) = s_2$ and $2s_2 = n+1$. Notice that we can assume $s_2 > 2$ (because when $s_2 = 2$, we have n = 3 and $D \cong \overrightarrow{C}_7\langle 1, 2 \rangle$) and hence $\{(0, s_2 - 1), (s_2 + 1, n + 1)\} \subseteq A$.

 $s_2 + 1 \in B$; $(s_2 + 1 \notin R, (s_2 + 1, s_2, 0)), (s_2 + 1 \notin W, (s_2 + 1, n + 1, 0)).$ $2n \in B$; $(2n \notin R, (2n, s_2, 0)), (2n \notin W, (2n, s_2 + 1, n + 1)).$

Now consider $s_2 - 1$; $(s_2 - 1 \notin R, (s_2 - 1, 2n, s_2)), (s_2 - 1 \notin W, (s_2 - 1, n + 1, 0))$, hence $s_2 - 1 \in B$ and $(s_2 - 1, n + 1, s_2)$ is an h.c. triangle.

Case 12. $s_1 = 1$ and $n + 1 - s_2 \in W$.

This case follows directly from Case 11 by applying Lemma 2.

Case 13. $s_1 = 1$ and there exists $i \in (2, \gamma, n - 1)$, $i \in W$ such that $\{(0, i), (i, n + 1)\} \subseteq A(D)$.

When $s_2 \neq n$ we have (0, i, n+1) an h.c. triangle so we will assume $s_2 = n$.

First notice that we can assume $n \geq 6$ (Because; when n = 2 we have $D \cong \overrightarrow{C}_5\langle 1, 2 \rangle$; when n = 3, $D \cong \overrightarrow{C}_7\langle 1, 3 \rangle$; when n = 4, $D \cong \overrightarrow{C}_9\langle 1, 4 \rangle$; and when n = 5, $D \cong \overrightarrow{C}_{11}\langle 1, 5 \rangle$.

First we will analyze the case i = 2; in this case consider n+3; $n+3 \in B$; $(n+3 \notin R, (n+3,0,2)), (n+3 \notin W, (n+3,0,n+1))$ and now consider n+5; $(n+5 \notin R, (n+5,n+3,2)), (n+5 \notin B, (n+5,2,n+1))$ hence $n+5 \in W$ and (n+5,0,n+1) is an h.c. triangle (notice that $(n+5,0) \in A$ because $n \ge 6$).

Now suppose $i \in (3, \gamma, n-1)$.

Consider 1; $1 \in R$; $(1 \notin W, (1, 0, n + 1)), (1 \notin B, (1, i, n + 1)).$

Let $h \in \{n+3, n+4\}$ be such that $(i,h) \in A$ (when i=3 we take h=n+4 and when i>3 we take h=n+3, since $s_1=1$ and $s_2=n$ we have $(i,h) \in A$ and since $n \geq 6$ we have $\{(h,0),(h,1)\} \subseteq A\}$; and consider h; $(h \notin B, (h,1,i)), (h \notin R, (h,0,i))$ hence $h \in W$ and (h,0,n+1) is an h.c. triangle.

Case 14. $s_1 = 1$ and $2n \in W$.

Subcase 14.a. $s_1 = 1, 2n \in W$ and $s_2 = n$.

In this case we can assume (as in Case 13 when $s_2 = n$) $n \ge 6$.

 $1 \in B$, $(1 \notin R, (1,0,2n))$, $(1 \notin W, (1,0,n+1))$. $n+2 \in B$; $(n+2 \notin R, (n+2,2n,1))$, $(n+2 \notin W, (n+2,n+1,1))$. Now consider 3; $(3 \notin W, (3,n+1,1))$, $(3 \notin B, (3,n+1,2n))$ hence $3 \in R$ and (3,n+2,2n) is an h.c. triangle.

Subcase 14.b. $s_1 = 1, 2n \in W$ and $s_2 = n - 1$. In this case (0, 2n, n + 1) is an h.c. triangle.

Subcase 14.c. $s_1 = 1, 2n \in W \text{ and } s_2 = 2.$

In this case we will assume $n \geq 5$. (Because when n = 2 when obtain $D \cong \overrightarrow{C}_5\langle 1,2 \rangle$; when n = 3, $D \cong \overrightarrow{C}_7\langle 1,2 \rangle$ and when n = 4, $D \cong \overrightarrow{C}_9\langle 1,2 \rangle$). $2 \in W$; $(2 \notin R, (2,0,2n)), (2 \notin B, (2,n+1,2n))$, now consider 3; $(3 \notin R, (3,2,0)), (3 \notin B, (3,n+1,2n))$ (notice that $(3,n+1) \in A$ because $n+1 \geq 6$). Hence $3 \in W$ and (3,n+1,0) is and h.c. triangle.

Subcase 14.d. $s_1 = 1, 2n \in W \text{ and } s_2 \notin \{2, n-1, n\}.$

Consider 1; we can assume that $1 \notin W$ because when $1 \in W$ we are in Case 9 and we are done, $(1 \notin R, (1,0,2n))$. Hence $1 \in B$ and (1, n+1, 2n) is an h.c. triangle.

Case 15. $s_1 = 1$ and $n + 2 \in W$.

This Case follows directly from Case 14 by applying Lemma 2.

Case 16. $s_1 = 1$, and $i \in (n + 3, \gamma, 2n - 1)$ with $\ell(i, \gamma, 0) = s_2$ satisfies $i \in W$.

We can assume $1 \notin W$ (see Case 9), $(1 \notin R, (1,0,i))$ hence $1 \in B$. Clearly in this case $s_2 \notin \{n, n-1\}$, so $\{(i,1), (1,n+1)\} \subseteq A$.

When $(i, n + 1) \in A$ we have (i, n + 1, 0) is an h.c. triangle and when $(n + 1, i) \in A$ we obtain (n + 1, i, 1) an h.c. triangle.

Case 17. $s_1 = 1$ and $n + 1 + s_2 \in W$.

This case follows directly from Case 16 and Lemma 2.

Case 18. $s_1 = 1$ and there exists $i \in (n+1, \gamma, 0) \cap W$ such that $\{(n+1, i), (i, 0)\} \subseteq A$.

Along this case we will assume without more explanation that there is no vertex $j \in (0, \gamma, n+1) \cap W$. (because when such a vertex exists we are in some of the cases 9 to 17).

Clearly, when $s_2 = n$ we have (0, n + 1, i) an h.c. triangle.

Subcase 18.a. $s_2 = n - 1$.

We have $\{(i+n-1,i),(i,i+n),(i+n+1,i),(i,i+n+2)\}\subseteq A$. $i+n-1\in B;\ (i+n-1\not\in R,\ (i+n-1,i,0)).\ i+n\in B;\ (i+n\not\in R,\ (i+n,i+n-1,i)).$

 $i+n+2 \in R$; $(i+n+2 \notin B, (i+n+2, n+1, i))$. $i+n+1 \in R$; $(i+n+1 \notin B, (i+n+1, i, i+n+2))$.

When $(0, i+n+1) \in A$ we obtain (0, i+n+1, i) an h.c. triangle hence we can assume $(i+n+1, 0) \in A$ and then $\ell(0, \gamma, i+n+1) \in \{s_1, s_2\}$; if i+n+1=1 we have i+n=0 and i=n+1 which is impossible (because $n+1 \in R$ and $i \in W$); so i+n+1=n-1, i=2n-1 and $\ell(i, \gamma, 0)=2$.

When $(i+n,n+1) \in A$ we obtain (i+n,n+1,i) an h.c. triangle hence we can assume $(n+1,i+n) \in A$ and then $\ell(i+n,\gamma,n+1) \in \{s_1,s_2\}$; if i+n=n we have i=0 which is impossible $(i \in W \text{ and } 0 \in B)$; so i+n=2, i=n+3 and $\ell(n+1,\gamma,i)=2$.

Since $\ell(i, \gamma, 0) = \ell(n+1, \gamma, i) = 2$ we conclude n = 4 and $D \cong \overrightarrow{C}_9\langle 1, 3 \rangle$.

Subcase 18.b Assume the hypothesis on Case 18, $s_2 \notin \{n, n-1\}$. Since $s_2 \notin \{n, n-1\}$ we have $\{(i, i+n-1), (i, i+n), (i+n+1, i), (i+n+2, i)\} \subseteq A$.

First suppose $s_2 = 2$; in this case: $(0, i + n + 2) \in A$ and $(i + n + 2 \notin R, (0, i + n + 2, i))$ hence $i + n + 2 \in B$; $(i + n - 1, n + 1) \in A$ and $(i + n - 1 \notin B, (i + n - 1, n + 1, i))$ hence $i + n - 1 \in R$. Also we have $(i + n - 1, i + n + 2) \in A$ and then (i + n - 1, i + n + 2, i) is an h.c. triangle.

Now suppose $s_2 \neq 2$; in this case (i+n-1, i+n+1, i) is a triangle, so we can assume $\{i+n-1, i+n+1\} \subseteq B$ or $\{i+n-1, i+n+1\} \subseteq B$.

When $\{i+n-1, i+n+1\} \subseteq R$ we have $(i+n+1, 0) \in A$ (because when $(0, i+n+1) \in A$ we obtain (0, i+n+1, i) an h.c. triangle), and since $i+n+1>1, \ \ell(i+n+1, \gamma, 0)=s_2$. It follows that $(0, i+n+2) \in A$, $(i+n+2 \not\in R, (i+n+2, i, 0))$ and $i+n+2 \in B$.

Since $i + n + 2 \in B$ we have $i + n \in B$, $(i + n \notin R, (i + n, i + n + 2, i))$. $i + n \in B$ implies $(n + 1, i + n) \in A$ (in other case (i + n, n + 1, i) is an h.c.

triangle), and $\ell(i+n,\gamma,n+1) = s_2$ (because $i \neq 0$ and then $i+n \neq n$). So; when $s_2 \neq 3$ we have (i+n-1,i+n+2,i) an h.c. triangle and when $s_2 = 3$ we obtain n+1 = 5 and $D \cong \overrightarrow{C}_9\langle 1,3 \rangle$.

When $\{i+n-1,i+n+1\}\subseteq B$ we have $(n+1,i+n-1)\in A$ (otherwise (i+n-1,n+1,i) is an h.c. triangle) and since $i+n-1\neq n$ we obtain $\ell(i+n-1,\gamma,n+1)=s_2$. Since $i+n\neq n$ we observe that $(i+n,n+1)\in A$ and then $i+n\in R$; $(i+n\not\in B,(i+n,n+1,i))$; it follows $i+n+2\in R$; $(i+n+2\not\in B,(i+n,i+n+2,i))$, and we can assume $(i+n+2,0)\in A$ (when $(0,i+n+2)\in A$ the triangle (0,i+n+2,i) is an h.c. triangle), and then $i+n+2=s_2$ (clearly $i+n+2\neq 1$). Finally, observe that when $s_2\neq 3(i+n-1,i+n+2,i)$ is an h.c. triangle and when $s_2=3$ we obtain n=2 (remember $i+n+2=s_2$ and $i+n-1=n+1-s_2$) which is impossible because $s_2\leq n$.

Case 19. $s_2 = n, s_1 \neq 1 \text{ and } s_1 \in W.$

Subcase 19.a. $s_2 = n, s_1 \neq 1, s_1 \in W \text{ and } 2s_1 < n.$

Let $j \in (n+1, \gamma, 0)$ be such that $\ell(j, \gamma, 0) = s_1$.

We have $\{(s_1, n+1), (n+1, j), (0, j)\} \subseteq A$.

 $j \in W$; $(j \notin R, (j, s_1, 0)), (j \notin B, (j, s_1, n + 1))$. Notice $s_1 \neq n - 1$ because $n \geq 2$, then we have $\{(2n, s_1), (n + 1, 2n)\} \subseteq A$. And consider 2n; $(2n \notin W, (2n, 0, n + 1)), (2n \notin B, (2n, s_1, n + 1))$ hence $2n \in R$ and then (2n, 0, j) is an h.c. triangle.

Subcase 19.b. $s_2 = n, s_1 \neq 1, s_1 \in W \text{ and } 2s_1 = n.$

In this case we will assume $s_1 \leq n-2$ (because when $s_1 = n-1$ we obtain $D \cong \overrightarrow{C}_5\langle 1, 2 \rangle$).

 $2n \in R$; $(2n \notin W, (2n, 0, n + 1)), (2n \notin B, (2n, s_1, n + 1)).$

 $1 \in W$; $(1 \notin R, (1, s_1, 0))$, $(1 \notin B, (1, s_1, n + 1))$. $n + 2 \in B$; $(n + 2 \notin W, (n + 2, 0, n + 1))$, $(n + 2 \notin R, (n + 2, 0, 1))$. Finally, consider j; $(j \notin W, (j, 2n, 0))$, $(j \notin R, (j, 1, n + 2))$ hence $j \in B$ and (j, 2n, i) is an h.c. triangle.

Subcase 19.c. $s_2 = n, s_1 \neq 1, s_1 \in W \text{ and } 2s_1 > n.$

When $2s_1 = n + 1$ we have $(0, n + 1, s_1)$ an h.c. triangle. So we will assume $2s_1 \ge n + 2$. (notice that $2s_1 \ge n + 2$ implies $n + 1 - s_1 \in (0, \gamma, s_1)$).

Consider $n+1-s_1$; $n+1-s_1 \in W$; $(n+1-s_1 \notin R, (n+1-s_1, s_1, 0))$, $(n+1-s_1 \notin B, (n+1-s_1, s_1, n+1))$. Here we consider two possibilities: Let $s_1 = n-1$.

We will assume $n \geq 4$ (because when n = 2, $D \cong C_5\langle 1, 2 \rangle$ and when n = 3, $D \cong C_7\langle 2, 3 \rangle$). Observe that in this case $n + 1 - s_1 = 2$.

 $n \in W$; $(n \notin R, (n, 0, 2)), (n \notin B, (n, n + 1, 2))$. Consider the vertex 4; $4 \in W$; $(4 \notin R, (4, n, 0))$ (when n = 4 we are done because we proved $n \in W$), $(4 \notin B, (4, n + 1, 2))$. Now consider n + 3; $n + 3 \in B$; $(n + 3 \notin R, (n + 3, 0, 2)), (n + 3 \notin W, (n + 3, 0, n + 1))$. We conclude that (n + 3, 4, n + 1) is an h.c. triangle.

And let $s_1 \leq n-2$.

First we prove that $(n+1-s_1+1) \in W$. When $n+1-s_1+1=s_1$ we are done, when $n+1-s_1+1 \neq s_1$ we have $(n+1-s_1+1 \notin R, (n+1-s_1+1, s_1, 0)), (n+1-s_1+1 \notin R, (n+1-s_1+1, n+1, n+1, n+1-s_1))$.

Now $1 \in W$; $(1 \notin R, (1, s_1, 0)), (1 \notin B, (n+1, 1, s_1))$. Finally, $n+2 \in B$; $(n+2 \notin R, (n+2, 0, 1)), (n+2 \notin W, (n+2, 0, n+1))$. We conclude that $(n+2, n+1-s_1+1, n+1)$ is an h.c. triangle.

Case 20. $s_2 = n, s_1 \neq 1 \text{ and } n + 1 - s_1 \in W.$

This case follows directly from Lemma 2 and Case 19.

Case 21. $s_2 = n, \ s_1 \neq 1$ and the vertex $i \in (n+1, \gamma, 0)$ such that $\ell(i, \gamma, 0) = s_1$ is white.

Subcase 21.a. $2s_1 < n$.

 $(s_1 \notin R, (s_1, 0, i)), (s_1 \notin B, (s_1, n+1, i))$ hence $s_1 \in W$ and we are in Case 19.

Case 21.b. $2s_1 = n$.

In this case we will assume $s_1 \neq n-1$ (because when $s_1 = n-1$ we obtain $D \cong \overrightarrow{C}_5\langle 1, 2 \rangle$).

 $n+2 \in R$; $(n+2 \notin B, (n+2, i, n+1)), (n+2 \notin W, (n+2, 0, n+1)).$ $2n \in B$; $(2n \notin R, (2n, 0, i)), (2n \notin W, (2n, 0, n+1)).$ $s_1 \in B$; $(s_1 \in R, (s_1, i, 2n)), (s_1 \notin W, (s_1, n+1, 2n)).$ $1 \in B$; $(1 \notin R, (1, j, i)), (1 \notin W, (1, n+2, 0)).$

Hence we have (1, n + 2, i) an h.c. triangle.

Subcase 21.c. $2s_1 \ge n+1$.

Let $s_1 = n - 1$.

In this case we will assume $n \geq 4$. (Because when n = 2, $D \cong \overrightarrow{C}_5\langle 1, 2 \rangle$ and when n = 3, $D \cong \overrightarrow{C}_7\langle 2, 3 \rangle$).

In this case i = n + 2 and $\{(0, n + 2), (2n, n + 1)\} \subseteq A(D)$, moreover since n > 4 we have n + 3 < 2n.

 $2n \in W$; $(2n \notin R, (2n, 0, n+2))$, $(2n \notin B, (2n, n+1, n+2))$. $n+3 \in W$; $(n+3 \notin R, (n+3, 0, n+2))$, $(n+3 \notin B, (n+3, 2n, n+1))$. So we have (0, n+1, n+3) an h.c. triangle.

And let $s_1 \leq n-2$.

 $\begin{array}{l} n+1+s_1\in W;\ (n+1+s_1\not\in R,(n+1+s_1,0,i)),\ (n+1+s_1\not\in B,(n+1+s_1,n+1,i)),\ n+2\in R;\ (n+2\not\in B,(n+2,n+1+s_1,n+1)),\ (n+2\not\in W,(n+2,0,n+1)),\ i+1\in W,\ \text{when}\ i+1=n+1+s_1\ \text{we have}\ i+1\in W\ \text{and when}\ i+1\neq n+1+s_1\ \text{we have};\ (i+1\not\in R,(i+1,0,i)),\ (i+1\not\in B,(i+1,n+1+s_1,n+1)).\ 1\in R;\ (1\not\in B,(1,n+2,i)),\ (1\not\in W,(1,n+2,0)).\ \text{So we obtain}\ (1,i+1,0)\ \text{an h.c. triangle.} \end{array}$

Case 22. $s_2 = n$, $s_1 \neq 1$ and $n + 1 + s_1 \in W$. This case follows directly from Lemma 2 and Case 21.

Case 23. $s_2 = n, s_1 \neq 1$ and there exists $i \in (n+1, \gamma, 0) \cap W$ such that $\{(n+1, i), (i, 0)\} \subseteq A(D)$.

In this case (0, n + 1, i) is an h.c. triangle.

Case 24. $s_2 = n$, $s_1 \neq 1$ and there exists $i \in (0, \gamma, n+1) \cap W$ such that $\{(0, i), (i, n+1)\} \subseteq A(D)$.

In this case we will assume that $V(n+1,\gamma,0) \cap W = \emptyset$ (because when there exists $x \in V(n+1,\gamma,0) \cap W$ we are in some of the previous cases).

Subcase 24.a. $s_1 = n - 1$.

In this case we will assume $n \geq 7$ (When n = 2, $D \cong \overrightarrow{C}_5\langle 1, 2 \rangle$; when n = 3, $D \cong \overrightarrow{C}_7\langle 2, 3 \rangle$; when n = 4, $D \cong \overrightarrow{C}_9\langle 3, 4 \rangle$; when n = 5, $D \cong \overrightarrow{C}_{11}\langle 4, 5 \rangle$ and when n = 6, $D \cong \overrightarrow{C}_{13}\langle 5, 6 \rangle$).

Since $s_1 = n - 1$ we have $\{(i + n - 1, i), (i, i + n + 2)\} \subseteq A$. $i + n - 1 \in R$; $(i + n - 1 \notin B, (i + n - 1, i, n + 1))$ (Notice that since $s_1 = n - 1$, the hypothesis on Case 24 imply $i \in (3, \gamma, n - 2)$). $i + n + 2 \in B$; $(i + n + 2 \notin R, (i + n + 2, 0, i))$.

When $i + n + 3 \neq 0$ and $n + 2 \neq i + n - 1$, we have $i + n + 3 \in B$; $(i+n+3 \notin R, (i+n+3, i, i+n+2))$. $n+2 \in R$; $(n+2 \notin B, (n+2, i+n-1, i))$; and then (n+2, i+n+3, i) is an h.c. triangle.

When i+n+3=0 we have i=n-2 and since $n\geq 7$ we also have $n+2\neq i+n-1$ and $n+3\neq i+n-1$. Consider n+3; $(n+3\not\in B,(n+3,i+n-1,i))$ hence $n+3\in R$ and (n+3,0,i) is an h.c. triangle.

When n+2=i+n-1 we have i=3 and since $n\geq 7$ we have $2n\neq i+n+2$ and $2n-1\neq i+n-2$. Consider 2n-1; $(2n-1\notin R,(2n-1,i,i+n+2))$ hence $2n-1\in B$ and (2n-1,i,n+1) is an h.c. triangle.

Subcase 24.b. $s_1 \leq n-2$.

Since $s_2 = n$ and $s_1 \le n - 2$ we have $\{(i, i + n - 1), (i + n, i), (i, i + n + 1), (i + n + 2, i)\} \subseteq A$.

Let i + n + 2 = 0.

In this case we have $i=n-1, i+n+1=2n \in B; (i+n+1 \not\in R, (i+n+1, i+n+2,0)), n \in B; (n \not\in R, (n,0,n-1)), (n \not\in W, (n,n+1,i+n+1)), i+n \in B, (i+n \not\in R, (i+n,n-1,n)), i+n-1 \in B; (i+n-1 \not\in R, (i+n-1,i+n,i));$ now notice that we can assume $(i+n,n+1) \in A$ (When $(n+1,i+n) \in A$, (n+1,i+n,i) is and h.c. triangle), hence $\ell(n+1,\gamma,i+n)=s_1=n-2$. Finally, consider i+n-2; we can assume i+n-2>n+1 (when i+n-2=n, $D \cong \overrightarrow{C}_7\langle 1,3\rangle$ and when i+n-2=n+1, $D\cong \overrightarrow{C}_9\langle 2,4\rangle$); since $s_1=n-2$ and $s_2=n$ we have $\{(i+n-2,i),(n,i+n-2),(n+1,i+n-2)\}\subseteq A$; then $(i+n-2\not\in B, (i+n-2,i,n+1))$, so $i+n-2\in R$ and (i+n-2,i,n) is an h.c. triangle.

And let $i + n + 2 \neq 0$.

First we prove that we can assume $(n+2, i) \in A$.

Suppose $(i, n+2) \in A$; then $(n+2 \notin R, (n+2, 0, i))$, so $n+2 \in B$. Now consider i+n; $i+n \neq n+2((i, n+2) \in A)$, and $(i+n, i) \in A$, $i+n \neq n+1(s_2=n)$.

When $\{(n+2,i+n),(n+1,i+n)\}\subseteq A$ we have $(i+n\not\in B,(i+n,i,n+1))$ hence $i+n\in R$ and (i+n,i,n+2) is an h.c. triangle, so we have $(i+n,n+1)\in A$ or $(i+n,n+2)\in A$ and then $\ell(n+1,\gamma,i+n)=s_1$ or $\ell(n+2,\gamma,i+n)=s_1$; in any case and since $i+n+2\neq 0$ we have $\{(n+2,i+n+2),(n+1,i+n+2)\}\subseteq A$. Finally, consider $i+n+2,(i+n+2\not\in R,(i+n+2,i,n+2))$ hence $i+n+2\in B$ and (i+n+2,i,n+1) is an h.c. triangle.

Now we prove that we can assume $(i, 2n) \in A$.

Suppose $(2n,i) \in A$, then $(2n \notin B,(2n,i,n+1))$, hence $2n \in R$. When $\{(i+n+1,0),(i+n+1,2n)\}\subseteq A$ (Notice that since $i+n+2 \neq 0$ we have i+n+1 < 2n), we have $(i+n+1 \notin R,(i+n+1,0,i))$ hence $i+n+1 \in B$ and (i+n+1,2n,i) is an h.c. triangle. So we have $(0,i+n+1) \in A$ or $(2n,i+n+1) \in A$ (and since $i+n+1 \neq n+1$ we have $\ell(i+n+1,\gamma,0) = s_1$ or $\ell(i+n+1,\gamma,2n) = s_1$). So when $i+n-1 \neq n+1$ we have $\{(i+n-1,0),(i+n-1,2n)\}\subseteq A$ and consider $i+n-1,(i+n-1 \notin R,(i+n-1,0,i))$ hence $i+n-1 \in B$ and (i+n-1,2n,i) is an h.c. triangle. Now we analyze the case when i+n-1 = n+1 and $(0,i+n+1) \in A$; in this case $s_1 = n-2$ and consider i+n+3; Since $s_1 = n-2$ we have $(i,i+n+3) \in A$ and we can assume i+n+3 < 2n (when i+n+3 = 0 we have n=4 and n=1 and

is an h.c. triangle. Finally, analyze the case when i+n-1=n+1 and $(2n,i+n+1)\in A$ in this case $s_1=n-3$ and consider i+n+4 we have $(i,i+n+4)\in A$ and we can assume i+n+4<2n (when i+n+4=0 we obtain n=5 and $D\cong\overrightarrow{C}_{11}\langle 2,5\rangle$ and when i+n+4=2n we obtain n=6 and $D\cong\overrightarrow{C}_{13}\langle 3,6\rangle$); $(i+n+4\not\in R,(i+n+4,0,i))$ hence $i+n+4\in B$ and (i+n+4,2n,i) is an h.c. triangle.

So we can assume $\ell(2n, \gamma, i) = \ell(i, \gamma, n+2) = s_1$. $n+2 \in R$; $(n+2 \notin B, (n+2, i, n+1))$. $2n \in B$; $(2n \notin R, (2n, 0, i))$. Finally, consider 1; $(1 \notin W, (0, 1, n+2))$, $(1 \notin R, (1, i, 2n))$ hence $1 \in B$ and (1, i, n+1) is an h.c. triangle.

References

- [1] B. Abrego, J.L. Arocha, S. Fernández Merchant and V. Neumann-Lara, *Tightness problems in the plane*, Discrete Math. **194** (1999) 1–11.
- [2] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319–326.
- [3] J.L. Arocha, J. Bracho and V. Neumann-Lara, *Tight and untight triangulated surfaces*, J. Combin. Theory (B) **63** (1995) 185–199.
- [4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Pub. Co., 1976).
- [5] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197-198 (1999) 617-632.
- [6] V. Neumann-Lara and M.A. Pizaña, Externally loose k-dichromatic tournaments, in preparation.

Received 25 August 1999