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Abstract

A tournament is said to be tight whenever every 3-colouring of its
vertices using the 3 colours, leaves at least one cyclic triangle all whose
vertices have different colours. In this paper, we extend the class of
known tight circulant tournaments.
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1 Introduction

Let Z2m+1 be the set of integers mod 2m + 1. If J is a nonempty subset
of Z2m+1\{0} such that |{j,−j} ∩ J | = 1 for every j ∈ Z2m+1\{0}, then

the circulant tournament
−→
C 2m+1(J) is defined by V (

−→
C 2m+1(J)) = Z2m+1,

A(
−→
C 2m+1(J)) = {(i, j) : i, j ∈ Z2m+1 and j − i ∈ J}. Finally, for S ⊆ Im,

−→
C 2m+1〈S〉 will denote the circulant tournament

−→
C 2m+1(J) where J = (Im∪

(−S))\S and Im = {1, 2, . . . , m} ⊆ Z2m+1.

In [5], the acyclic disconnection −→ω (D) (resp: the
−→
C 3-free disconnection

−→ω 3(D)) of a digraph D, was defined to be the maximum possible number of
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connected components of a digraph obtained from D by deleting an acyclic

set of arcs (resp: a
−→
C 3-free set of arcs). It was proved there [5, Theorem 2.4]

that −→ω +

3 (D) = −→ω 3(D) + 1 is the minimum number r such that every r-
colouring of V (D) using all the colours, leaves at least one heterochromatic
cyclic triangle (i.e., a cyclically oriented triangle whose vertices are coloured
with 3 different colours). Some related topics are considered in [6].

In [2], the heterochromatic number of a 3-graph (V,E) (hypergraph, all
whose edges have cardinality 3) was defined to be the minimum number of
colours r such that every vertex r-colouring using all the colours leaves at
least one heterochromatic 3-edge; 3-graphs with heterochromatic number 3
were called tight. Tight 3-graphs have been studied in [1, 2, 3].

As remarked in [5], if T is any tournament, −→ω +

3 (T ) is just the hete-
rochromatic number of the 3-graph H3(T ) = (V (T ), τ3(T )) where τ3(T ) =

{S ⊆ V (T ) : T [S] ∼= −→
C 3}. We consequently define a tournament T to be

tight whenever −→ω +

3 (T ) = 3, namely when every 3-colouring of its vertices
using the 3 colours, leaves at least one heterochromatic cyclic triangle (cyclic
triangle all whose vertices have different colours).

It was proved in [5, Theorem 4.11] that for m ≥ 2,
−→
C 2m+1〈s〉 is tight

provided s 6= 2.

In this paper, we prove that if 1 ≤ s1 < s2 ≤ m then−→ω +

3 (
−→
C 2m+1〈s1, s2〉)

is tight for all but a small set of pairs (s1, s2) (Theorem 8) and the excep-
tional pairs are determinated.

2 Preliminaries
We give here some definitions apart from those given in the Introduction. If
D is a digraph, V (D) and A(D) (or simply A) will denote the sets of vertices
and arcs of D respectively. If γ = (0, 1, . . . , m) is a directed cycle then we
denote by (i, γ, j) the ij-directed path contained in γ, and by `(i, γ, j) its
length. A vertex r-colouring of a digraph is said to be full if it uses the r
colours. A heterochromatic cyclic triangle (h.c. triangle) is a cyclic triangle
whose vertices are coloured with 3 different colours. For general concepts
we refer the reader to [4].

We will need the following two Lemmas:

Lemma 1. Let f be a vertex k-colouring of the circulant tournaments
C2m+1(J) which leaves no h.c. triangle. If α is either an automorphism
or an antiautomorphism of C2m+1(J) then f.α leaves no h.c. triangle.
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Lemma 2. If the circulant tournament C2m+1(J) has a full vertex 3-
colouring f which leaves no h.c. triangle then it has another such 3-colouring
f ′ such that 0 and m + 1 belong to different chromatic classes. Moreover, if
t belongs to a third chromatic class of f ′, then there is another 3-colouring
f ′′ leaving no h.c. triangle and such that 0, m + 1 and m + 1− t belong to
different chromatic classes of f ′′.

Proof. C2m+1(J) contains two vertices i and i+m+1 belonging to different
chromatic classes of f . Let α be an automorphism of C2m+1(J) such that
α(0) = i and α(m + 1) = i + m + 1, take f ′ = f.α and apply Lemma 1.
To prove the second part let β the antiautomorphism defined by β(j) =
−j + m + 1, take f ′′ = f ′.β and apply Lemma 1.

Remark 1. In what follows, when we refer the reader to Lemma 2, we are
thinking of the antiautomorphism β.

In [2] Neumann-Lara proved the two following results:

Theorem 1 [2]. Every full vertex 3-colouring of the circulant tournaments,
−→
C 2n+1(In) and

−→
C 2n+1〈s〉 with (2n + 1, s) 6= (9, 2) leaves an h.c. triangle.

Moreover −→w +
(
−→
C 9〈2〉) = 4.

Theorem 2 [2]. There exists a full vertex 3-colouring of the following cir-

culant tournaments which leaves no h.c. triangle:
−→
C 9〈2〉,−→C 3[

−→
C 5(1, 2)], and

−→
C 5(1, 2)[

−→
C 3]. Moreover for each of these tournaments −→w +

3 = 4.

Theorem 3. Every full vertex 3-colouring of the following circulant tour-

naments leaves an h.c. triangle:
−→
C 5〈1, 2〉, −→C 7〈1, 2〉, −→C 7〈1, 3〉, −→C 7〈2, 3〉,

−→
C 9〈1, 2〉, −→C 9〈1, 3〉, −→C 9〈2, 4〉, −→C 9〈3, 4〉, −→C 11〈1, 5〉, −→C 11〈2, 3〉, −→C 11〈2, 5〉,
−→
C 11 〈3, 5〉, −→C 11〈4, 5〉,−→C 13〈2, 3〉,−→C 13〈2, 4〉,−→C 13〈3, 6〉 and

−→
C 13〈5, 6〉.

Proof. The proof will follow from Lemma 1 and Theorem 1 by applying
an automorphism to each circulant tournament ennounced in Theorem 3
which transforms it in some circulant tournament considered in Theorem 1.
Along the proof of Theorem 3 and Theorem 4. We will write D1

i−→ D2 to
mean that the function fi(x) = ix is an isomorphism from D1 onto D2.−→
C 5〈1, 2〉 −1→ −→

C 5(I2);
−→
C 7〈1, 2〉 −1→ −→

C 7〈3〉;−→C 7〈1, 3〉 −3→ −→
C 7(I3);

−→
C 7〈2, 3〉 −1→

−→
C 7〈1〉;−→C 9〈1, 2〉 −2→ −→

C 9(I4);
−→
C 9〈1, 3〉 −1→ −→

C 9〈2, 4〉 −2→ −→
C 9〈1, 2〉 −2→ −→

C 9(I4);
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−→
C 9〈3, 4〉 2→−→

C 9(I4);
−→
C 11〈1, 5〉 8→−→

C 11〈1〉;−→C 11〈2, 3〉 3→−→
C 11(I5);

−→
C 11〈2, 5〉 4→

−→
C 11(I5);

−→
C 11〈3, 5〉 6→ −→

C 11〈5〉; −→C 11〈4, 5〉 2→ −→
C 11〈5〉; −→C 13〈2, 3〉 −2→ −→

C 13〈2〉;−→
C 13〈2, 4〉 5→ −→

C 13〈1〉;−→C 13〈3, 6〉 4→ −→
C 13〈5, 6〉 2→ −→

C 13〈5〉;−→C 13〈5, 6〉 2→
−→
C 13〈5〉.

Theorem 4. There exists a full vertex 3-colouring of the following circulant

tournaments which leaves an h.c. triangle:
−→
C 9〈2, 3〉,−→C 9〈1, 4〉,−→C 15〈2, 5〉

and
−→
C 15〈3, 4〉. Moreover −→w +

3 = 4 for each of these tournaments.

Proof. The proof will follow from Lemma 1 and Theorem 2 by aplying:

Consider the automorphism ϕ:
−→
C 9〈2, 3〉 → −→C 9〈2〉 defined as follows:

ϕ(0) = 0, ϕ(2) = 2, ϕ(3) = 6, ϕ(4) = 1, ϕ(5) = 8, ϕ(6) = 3,

ϕ(7) = 7 and ϕ(8) = 5;
−→
C 9〈1, 4〉 −1→ −→

C 9〈2, 3〉 ϕ→ −→
C 9〈2〉; because of [2]

−→
C 15〈2, 5〉 ∼= −→

C 3[
−→
C 5(I2)] and

−→
C 13〈3, 4〉 ∼= −→

C 5(I2)[
−→
C 3].

3 Main Result

Theorem 5. Every full vertex 3-colouring of the circulant tournament
−→
C 2n+1〈s1, s2〉 such that 1 ≤ s1 < s2 ≤ n and

−→
C 2n+1〈s1, s2〉 6∈

{−→
C 15〈3, 4〉,

−→
C 15〈2, 5〉,−→C 9〈2, 3 〉,−→C 9〈1, 4〉

}
leaves an h.c. triangle.

Proof. Consider any full vertex 3-colouring of D =
−→
C 2n+1〈s1, s2〉 as in

the hypothesis with colors red, blue and white and denote by R, B and
W (respectively) the chromatic classes. Without loss of generality, we can
assume n+1 ∈ R and 0 ∈ B. Along the proof we will denote (i 6∈ W, (i, j, k))
to mean that we can assume the vertex i is not white because if the vertex
i is white, then we have the h.c. triangle (i, j, k) and we are done.

The sequence γ1 = (0, 1, 2, . . . , 2n, 0); will be a directed cycle when
s1 6= 1 and the sequence γ2 = (0, 2n, 2n− 1, 2n− 2, . . . , 0) a directed cycle
when s1 = 1.

We will make the proof by considering several cases

Case 1. Let 2 ≤ s1 < s2 ≤ n− 1 and there exists i ∈ (0, γ, n + 1) ∩W
such that {(0, i), (i, n + 1)} ⊆ A(D).
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Clearly, in this case (0, i, n + 1) is an h.c. triangle.

Case 2. Let 2 ≤ s1 < s2 ≤ n − 1 and the vertex s1 ∈ W . (notice
(s1, 0) ∈ A(D)).

Subcase 2.a. Assume s1 + s2 < n.
Let j ∈ (n + 1, γ, 0) such that `(j, γ, 0) = s1.

Since s1 + s2 < n we have {(s1, n + 1), (n + 1, j), (j, s1)} ⊆ A(D).
j ∈ W : (j 6∈ R, (j, s1, 0)), (j 6∈ B, (j, s1, n + 1)). Each vertex t with
t ∈ (0, γ, s1)− {0, s1} is blue: (t 6∈ W, (t, n + 1, 0)), (t 6∈ R, (t, s1, 0)).

Now we consider several possibilities:
If s1 and s2 are not consecutives (s2 6= s1 + 1) then (j, 1, n + 1) is an

h.c. triangle.
If s1 and s2 are consecutives (s2 = s1 + 1), we have:
Let s1 > 2.

2 ∈ (0, γ, s1)− {0, s1}, so 2 ∈ B and (2, n + 1, j) is an h.c. triangle.
When s1 = 2 we have s2 = 3 and consider k ∈ (n + 1, γ, 0) such that

`(k, γ, 0) = s2; since s1 + s2 < n we have {(k, s1), (0, k)} ⊆ A(D), and
(k 6∈ R, (k, s1, 0)).

If (n + 1, k) ∈ A then (k 6∈ B, (k, s1, n + 1)). Hence k ∈ W and (k, 1,
n + 1) is an h.c. triangle. When (k, n + 1) ∈ A we have `(n + 1, γ, k) = s2;
so 2s2 = n, n = 6 and D ∼= C13〈2, 3〉.

Subcase 2.b. Assume s1 + s2 ≥ n + 1.
Let k ∈ (0, γ, n + 1) such that `(k, γ, n) = s2 (notice (n, k) ∈ A), Since
s1 + s2 ≥ n + 1 and s2 < n we have k ∈ (0, γ, s1) − {0, s1}; k is blue:
(k 6∈ R, (k, s1, 0)) , (k 6∈ W, (k, n + 1, 0)); n is blue: (n 6∈ R, (n, k, s1) when
(s1, n) ∈ A; and (n, s1, 0) when (n, s1) ∈ A), (n 6∈ W, (n, n + 1, 0)).

Now we will prove that we can assume (s1, n + 1) ∈ A. Suppose (n + 1,
s1) ∈ A; hence `(s1, γ, n + 1) ∈ {s1, s2}. When (s1, n) ∈ A, (n + 1, s1, n)
is an h.c. triangle. So (n, s1) ∈ A, `(s1, γ, n + 1) = s2, s2 = s1 + 1 and
s2+s1 = n+1. Now, when s1 = 2 we have s2 = 3, n+1 = 5 and D ∼= C9〈2, 3〉.
And when s1 > 2 we consider, n− 1; n− 1 ∈ W : (n− 1 6∈ R, (n− 1, n, s1)),
(n− 1 6∈ B, (n− 1, n + 1, s1) (notice s1 > 2). And we have (n− 1, n + 1, 0)
an h.c. triangle. So we will assume (s1, n + 1) ∈ A. Now k + 1 ∈ W :
(k + 1 6∈ R, (k + 1, s1, 0)), (k + 1 6∈ B, (k + 1, s1, n + 1)), (notice k + 1 6= s1

since (s1, n + 1) ∈ A and (n + 1, k + 1) ∈ A).
If (k + 1, n) ∈ A, then (k + 1, n, n + 1) is an h.c. triangle, so we will

assume (n, k + 1) ∈ A (notice that `(k + 1, γ, n) = s1, (n + 1, k + 2) ∈ A and
k + 2 6= s1).
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Finally, consider k + 2 : (k + 2 6∈ R, (k + 2, s1, 0)), (k + 2 6∈ B, (k + 2, s1,
n + 1)); hence k + 2 is white and (k + 2, n, n + 1) is an h.c. triangle.

Subcase 2.c. s1 + s2 = n.
First assume s1 6= 2.

Let k, t ∈ (n + 1, γ, 0) such that `(k, γ, 0) = s2 and `(t, γ, s1) = s2.
k ∈ B : (k 6∈ R, (k, s1, 0)), (k 6∈ W, (k, n + 1, 0)); n + 2 ∈ B : (n + 2 6∈ R,
(n + 2, k, s1)), (n + 2 6∈ W, (n + 2, k, n + 1)); t ∈ B : (t 6∈ R, (t, k, s1)),
(t 6∈ W, (t, k, n + 1) when (n+1, t) ∈ A and (t, n+1, 0) when (t, n + 1) ∈ A).
(Notice that (t, n + 1) ∈ A implies (0, t) ∈ A because s1 + s2 + n); also
1 ∈ B : (1 6∈ R, (1, s1, 0)), (1 6∈ W, (1, n + 1, 0)).

Now we consider two possibilities:
When s1 and s2 are not consecutives (s2 6= s1 + 1) we consider 2n; (2n 6∈
B, (2n, s1, n + 1)), (Notice (n + 1, 2n) ∈ A because s1 ≥ 2 and s1 + s2 = n,
so s2 ≤ n − 2), (2n 6∈ R, (2n, s1, n + 1)) (Notice (n + 2, 2n) ∈ A because
{s1, s2} 6= {2, n − 2}). Hence 2n is white and then (2n, 1, n + 1) is an h.c.
triangle, (notice again that (2n, 1) ∈ A because s1 6= 2).

When s1 and s2 are consecutives (s2 = s1+1), observe that when s1 = 2

we have s2 = 3 and D ∼= −→
C 11〈2, 3〉. So we will assume s1 > 2, and consider

2n− 1; (2n− 1 6∈ B, (2n− 1, s1, n + 1)) (notice (n + 1, 2n− 1) ∈ A because
s1 6= 2 and hence s2 6= n− 2), (2n− 1 6∈ R, (2n− 1, s1, n + 2)) (notice that
we can assume (n + 2, 2n − 1) ∈ A because if (2n − 1, n + 2) ∈ A then

s2 = n−3, s1 = 3, s2 = 4, n = 7 and D ∼= −→
C 15〈3, 4〉). Hence 2n−1 is white

and then (2n − 1, 1, n + 1) is an h.c. triangle (notice that we can assume
(2n − 1, 1) ∈ A because when (1, 2n − 1) ∈ A we have s1 = 3, s2 = n − 3,
s2 = 4, n = 7 and D ∼= C15〈3, 4〉).

Now assume s1 = 2, s2 = n− 2.

When s2 = s1 + 1 we obtain D ∼= −→
C 11〈2, 3〉; so we will assume s2 6= s1 + 1.

n ∈ B : (n 6∈ R, (n, 2, 0)), (n 6∈ W, (n, n + 1, 0); 1 ∈ B : (1 6∈ R, (1, 2, 0)));
(1 6∈ W, (1, n + 1, 0)); 3 ∈ B : (3 6∈ R, (3, 1, 2)), (3 6∈ W, (3, n, n + 1));
n + 3 ∈ B : (n + 3 6∈ R, (n + 3, 2, 0)), (n + 3 6∈ W, (n + 3, n + 1, 0));
n + 2 ∈ B : (n + 2 6∈ R, (n + 2, 1, 2)), (n + 2 6∈ W, (n + 2, n, n + 1));
4 ∈ B : (4 6∈ R, (4, 2, 3)), (4 6∈ W, (4, n + 1, n + 2)); 2n ∈ R : (2n 6∈ B,
(2n, 2, n + 1)) (notice that (2n, 2) ∈ A because s1 = 2 and s2 6= s1 + 1),
(2n 6∈ W, (2n, 4, n+1)) (notice that we can assume (2n, 4) ∈ A, because when

(4, 2n) ∈ A we obtain s2 = 5, n− 2 = 5, n = 7 and D ∼= −→
C 15〈2, 5〉). Finally

consider n−3; first notice that (n−3, 2n) ∈ A because `(2n, γ, n−3) = n−2
and (0, n− 3) ∈ A because s2 6= s1 + 1. We have (n− 3 6∈ W, (n− 3, 2n, 0)).
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We can assume (2, n−3) ∈ A because if (n−3, 2) ∈ A then `(2, γ, n−3) = s1,

s2 = 2s1 + 1 and D ∼= −→
C 15〈2, 5〉. So (n− 3 6∈ R, (n− 3, n, 2)); we conclude

that n−3 is blue and then (n−3, 2n, 2) is an h.c. triangle (notice (2n, 2) ∈ A
because s2 6= s1 + 1).

Case 3. Let 2 ≤ s1 < s2 ≤ n− 1 and the vertex n + 1− s1 ∈ W .
This case follows directly from Case 2 by applying Lemma 2.

Case 4. Let 2 ≤ s1 < s2 ≤ n − 1 and the vertex s2 ∈ W . (notice
(s2, 0) ∈ A).

Subcase 4.a. Assume the hypothesis on Case 4 and s1 + s2 < n. First
we prove that we can assume (s2, n + 1) ∈ A. Suppose (n + 1, s2) ∈ A,
then `(s2, γ, n + 1) = s2 (since s1 + s2 < n), 2s2 = n + 1 and s2 6= s1 + 1
(s2 = s1 + 1 implies s1 + s2 = n).
n ∈ R: (n 6∈ W, (0, n, n + 1)), (n 6∈ B, (n, n + 1, s2)) (notice that (s2, n) ∈ A
because s1 6= s2 − 1).
s2 − 1 ∈ W : (s2 − 1 6∈ R, (s2 − 1, s2, 0)) (notice s1 6= s2 − 1), (s2 − 1 6∈ B,
(s2 − 1, s2, n)). So (0, s2 − 1, n + 1) is an h.c. triangle.

We will assume (s2, n + 1) ∈ A.
Let j ∈ (n + 1, γ, 0) such that `(j, γ, 0) = s1; since s1 + s2 < n we have
{(j, s2), (n + 1, j)} ⊆ A.
j ∈ W : (j 6∈ R, (j, s2, 0)), (j 6∈ B, (j, s2, n + 1)).

Now consider s1, since s1 + s2 < n we have {(j, s1), (s1, n + 1)} ⊆ A.
and hence (s1 6∈ R, (s1, 0, j)), (s1 6∈ B, (s1, n + 1, j)). We conclude s1 ∈ W
and we are in Subcase 2.a.

Subcase 4.b. Assume s1 + s2 ≥ n + 1.
Notice that when s1 + s2 = n+1, s2 = n+1− s1, hence n+1− s1 ∈ W and
we are in Case 3. So we will assume s1 + s2 ≥ n + 2. Consider n + 1 − s1;
we can assume n + 1 − s1 6∈ W because when n + 1 − s1 ∈ W we are in
Case 3; (n + 1 − s1 6∈ B, (n + 1 − s1, s2, n + 1)); hence n + 1 − s1 ∈ R. So
when (0, n+1−s1) ∈ A we have (n+1−s1, s2, 0) an h.c. triangle. Then we
can assume and we will assume (n + 1 − s1, 0) ∈ A, and then 2s1 = n + 1.
Consider n+1−s2; n+1−s2 ∈ R: (n+1−s2 6∈ W, (n+1−s2, n+1−s1, 0)),
(n + 1− s2 6∈ B, (n + 1− s2, s2, n + 1)) when (s2, n + 1− s2) ∈ A). So when
(n + 1− s2, s2) ∈ A and (n + 1− s2, n + 1− s1, s2) when (n + 1− s2, s2) ∈ A
we have (n + 1− s2, s2, 0) an h.c. triangle (notice (0, n + 1− s2) ∈ A since
2s1 = n + 1 and s1 + s2 ≥ n + 2 imply n + 1− s2 ∈ (0, γ, n + 1− s1 = s1)).
Then we can assume and we will assume (s2, n + 1− s2) ∈ A.
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Notice that s1 and s2 are not consecutives. When s2 = s1 + 1 we have
(n + 1 − s2) + 1 = n + 1 − s1; we are assuming (n + 1 − s1, 0) ∈ A hence
l(0, γ, n + 1− s1) = s1 and (s2, n + 1− s2) ∈ A hence l(n + 1− s2, s2) = s1

and we conclude 2s1 + 1 = s2, then s1 + 1 = 2s1 + 1 and s1 = 0 which is
impossible.

Finally, consider s2−1 since s2 6= s1+1 we have s2−1 6= n+1−s1 (notice
n+1−s1 = s1);(s2−1 6∈ W, (s2−1, n+1, 0)), (s2−1 6∈ B, (s2−1, s2, n+1−s2))
(notice (n + 1− s2, s2− 1) ∈ A because l(n + 1− s2, s2) = s1). Hence s2− 1
is red and then (s2 − 1, s2, 0) is an h.c. triangle.

Subcase 4.c. s1 + s2 = n.
First assume s1 6= 2.

Let k ∈ (n + 1, γ, 0) such that l(k, γ, 0) = s1, notice (0, k) ∈ A. k ∈ B:
(k 6∈ R, (k, s2, 0)), (k 6∈ W, (k, n + 1, 0)) (notice (k, n + 1) ∈ A because
s1 + s2 = n).

When s2 = s1+1 we consider k−1; (k−1 6∈ B, (k−1, n+1, s2)), (k−1 6∈
R, (k−1, k, s2)), hence k−1 is white and then (k−1, n+1, 0) is an h.c. triangle
(notice that s2 = s1+1 and s1+s2 = n imply {(0, k−1), (k−1, n+1)} ⊆ A).

So we will assume s2 6= s1 + 1.
n ∈ B: (n 6∈ W, (0, n, n + 1)), (n 6∈ R, (n, s2, 0)); s2 − 1 ∈ B: (s2 − 1 6∈ W,
(s2 − 1, n + 1, 0) when (s2 − 1, n + 1) ∈ A and (s2 − 1, n, n + 1) when
(n + 1, s2 − 1) ∈ A); k − 1 ∈ B: (k − 1 6∈ W, (k − 1, n, n + 1)) (notice that
(k − 1, n) ∈ A because s1 + s2 = n), (k − 1 6∈ R, (k − 1, n, s2)).

Finally, consider k+1; (k+1 6∈ B, (k+1, s2, n+1)) (notice (s2, n+1) ∈ A
because s1 + s2 = n and s2 6= s1 + 1), (k + 1 6∈ W, (k + 1, s2 − 1, n + 1))

(We can assume (s2− 1, n+1) ∈ A because when (n+1, s2− 1) ∈ A we
have (n+1, s2−1, s2) an h.c. triangle, and we can assume (k+1, s2−1) ∈ A
because when (s2− 1, k + 1) ∈ A we have l(k + 1, γ, s2− 1) = s2, s1 = 2 and
s2 = n − 2). We conclude k + 1 is red and then (k + 1, s2, k − 1) is an h.c.
triangle. ((k − 1, k + 1) ∈ A because s1 6= 2).

Now assume s1 = 2 (hence s2 = n− 2).
n ∈ W : (n 6∈ R, (n, n− 2, 0)), (n 6∈ W, (n, n + 1, 0)).
1 ∈ B: (1 6∈ R, (1, n − 2, 0)), (we can assume (1, n − 2) ∈ A because when

(n − 2, 1) ∈ A we have s2 = s1 + 1, s2 = 3, s1 = 2 and D ∼= −→
C 11〈2, 3〉),

(1 6∈ W, (1, n + 1, 0)). n + 3 ∈ B: (n + 3 6∈ R, (n + 3, 1, n − 2)) (We can
assume (n− 2, n + 3) ∈ A because when (n + 3, n− 2) ∈ A we have s2 = 5,

s1 = 2 and D ∼= −→
C 15〈2, 5〉. And we can assume (n+3, 1) ∈ A because when

(1, n+3) ∈ A we have s2 = n−1 but we are assuming s2 = n−2). 2n ∈ W :
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(2n 6∈ R, (2n, n − 2, n + 3)) (We can assume (n + 3, 2n) ∈ A because when

(2n, n + 3) ∈ A we have s1 = n− 3 = 2, n = 5 and D ∼= −→
C 11〈2, 3〉).

Finally, consider n − 4; (n − 4 6∈ R, (n − 4, n, n − 2)) (We can assume
(n − 4, n) ∈ A because when (n, n − 4) ∈ A we have, s2 = 4, n = 6 and

D ∼= −→
C 13〈2, 4〉), (n−4 6∈ W, (n−4, n+1, 0)) (We can assume (n−4, n+1) ∈ A

because otherwise we obtain s2 = 5, s1 = 2, n = 7 and D ∼= −→
C 15〈2, 5〉. And

we can assume (0, n − 4) ∈ A because in other case s1 = n − 4 = 2, n = 6
and D ∼= C13〈2, 4〉. Hence n− 4 is blue and then (n− 4, n + 1, 2n) is an h.c.
triangle. (We can assume (2n, n− 4) ∈ A because when (n− 4, 2n) ∈ A we

have s1 = n− 3, n = 5 and D ∼= −→
C 11〈2, 3〉).

Case 5. When 2 ≤ s1 < s2 ≤ n− 1 and the vertex n + 1− s2 ∈ W .
This case follows directly from Case 4 by applying Lemma 2.

Case 6. When 2 ≤ s1 < s2 ≤ n − 1 and there exists a vertex i ∈
(n + 1, γ, 0), i ∈ W such that `(i, γ, 0) ∈ {s1, s2}. Since `(i, γ, 0) = s1 or
`(i, γ, 0) = s2 we have (0, i) ∈ A. We will assume (n + 1, i) ∈ A because
when (i, n + 1) ∈ A we have (i, n + 1, 0) an h.c. triangle.

Observe now that we can assume n 6∈ R. Because when n is red, consid-
ering the automorphism f : V (D) → V (D) such that f(x) = x+n+1 and in-
terchanging the colors blue and red we obtain the Case 3 when `(i, γ, 0) = s1

and the Case 5 when `(i, γ, 0) = s2. And by Lemma 1 we obtain an h.c.
triangle.
n ∈ B; it follows from the observation above and the fact (n 6∈ W, (n, n +
1, 0)).

We will assume (n, i) ∈ A. Because when (i, n) ∈ A we have (i, n, n+1)
an h.c. triangle.

Now we consider two possible cases:

Subcase 6.a. s1 + s2 ≤ n.
Since s1 + s2 ≤ n we have {(s1, n + 1), (i, s1)} ⊆ A.

Consider s1; we can assume s1 6∈ W because when s1 ∈ W we are in
Case 2, (s1 6∈ R, (s1, 0, i)); hence s1 is blue and then (s1, n + 1, i) is an h.c.
triangle.

Subcase 6.b. Assume s1 + s2 ≥ n + 1.
When `(i, γ, 0) = s2 or `(i, γ, 1) = s2 we consider j ∈ V (γ) such that
`(j, γ, i) = s1; since s1 + s2 ≥ n + 1, (n, i) ∈ A and (n + 1, i) ∈ A we have
j ∈ (1, γ, n − 1). If j ∈ W then we obtain some of the cases 1 to 5 and we
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are done, (j 6∈ R, (j, n, i)) (notice (i, j) ∈ A because `(j, γ, i) = s1), hence j
is blue and then (j, n + 1, i) is an h.c. triangle. So we have `(i, γ, 0) = s1

and `(i, γ, 1) 6= s2 (in particular s2 6= s1 + 1 and (i, 1) ∈ A).
Now we will prove that we can assume (1, n) ∈ A. When (n, 1) ∈ A we
have s1 = n − 1 or s2 = n − 1 but since s1 < s2 ≤ n − 1 we conclude
s2 = n−1. Since s2 = n−1 we have (i, i+n+2) ∈ A. When {(i+n+2, n),
(i + n + 2, n + 1)} ⊆ A we consider i + n + 2; since i + n + 2 ∈ (0, γ, n− 1)
we can assume i + n + 2 6∈ W (because when i + n + 2 ∈ W we are in some
of the cases 1 to 5 and we are done), (i + n + 2 6∈ B, (i + n + 2, n + 1, i))
hence i + n + 2 ∈ R and then (i + n + 2, n, i) is an h.c. triangle. So, we
have `(i + n + 2, γ, n) = s1 or `(i + n + 2, γ, n + 1) = s1; in any case we have
`(i+n, γ, n) 6= s1 and `(i+n, γ, n+1) 6= s1. Observe that `(i+n, γ, n) 6= s2

because when `(i+n, γ, n) = s2 = n−1 we have i+n = n and then s1 = n−1
which is impossible because s1 < s2. Also observe that `(i+n, γ, n+1) 6= s2

because when `(i+n, γ, n+1) = s2 = n−1 we obtain i+n = 2 and s1 = n−2
but we have s2 6= s1 + 1. We conclude that {(i + n, n), (i + n, n + 1)} ⊆ A.
Now consider i + n; we can assume i + n 6∈ W (see cases 1 to 5), (i + n 6∈
R, (i+n, n, i)) hence i+n is blue and then (i+n, n+1, i) is an h.c. triangle.
So we will assume (1, n) ∈ A.

Finally, consider 1; (1 6∈ W, (0, 1, n + 1)), (1 6∈ B, (1, n + 1, i)) hence
1 ∈ R and then (1, n, i) is an h.c. triangle.

Case 7. Let 2 ≤ s1 < s2 ≤ n−1 and; n+1+s1 ∈ W or n+1+s2 ∈ W .
This case follows directly from Case 6 by applying Lemma 2.

Case 8. Let 2 ≤ s1 < s2 ≤ n− 1 and there exists j ∈ (n + 1, γ, 0) such
that j ∈ W , and {(n + 1, j), (j, 0)} ⊆ A.

First we will prove that in this case we can assume (n, j) ∈ A.
Suppose (j, n) ∈ A; (n 6∈ B, (n, n + 1, j)), (n 6∈ W, (n, n + 1, 0)). Hence
n is red and `(n, γ, j) ∈ {s1, s2}. And now considering the automorphism
f :V (D) → V (D) such that f(t) = t+n+1 and interchanging the colors red
and blue we obtain Case 3 or Case 5 and we are done. So we will assume
(n, j) ∈ A.

Observe that we can assume (j, 1) ∈ A.
When (1, j) ∈ A we have (1 6∈ R, (1, j, 0)), moreover (1 6∈ W, (1, n + 1, 0)).
Hence 1 ∈ B and now considering the automorphism f : V (D) → V (D) such
that f(t) = t+n and interchanging the colors blue and red we obtain Case 3
or Case 5 and we are done. So we will assume (j, 1) ∈ A.
n ∈ B; (n 6∈ W, (n, n + 1, 0)), (n 6∈ R, (n, j, 0)).
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1 ∈ R; (1 6∈ W, (1, n + 1, 0)) (1 6∈ B, (1, n + 1, j)).
So when (1, n) ∈ A we have (1, n, j) an h.c. triangle. Then we will

assume (1, n) ∈ A. Hence s2 = n− 1.
Since s2 = n− 1, and n 6= s1, n 6= s2 we have;
{(j + n− 1, j), (j, j + n), (j + n + 1, j), (j, j + n + 2)} ⊆ A. Since {j + n,
j + n + 1} ⊆ V (1, γ, n) we can assume {j + n, j + n + 1} ∩W = ∅ because
if {j + n, j + n + 1} ∩ W 6= ∅ then we are in some of the Cases 1 to 5
and we are done. We conclude j + n 6∈ W and j + n + 1 6∈ W . (i.e.,
{j + n, j + n + 1} ⊆ R∪B). When j + n and j + n + 1 have different colors
we obtain the h.c. triangle (j + n, j + n + 1, j) so we can assume they have
the same color and we will analyze the two possibilities:

Subcase 8.a. {j + n, j + n + 1} ⊆ R.
In this case we can assume (j +n+1, 0) ∈ A because when (0, j +n+1) ∈ A
we obtain (0, j + n + 1, j) an h.c. triangle. Hence (j + n + 1, 0) ∈ A and
`(0, γ, j + n + 1) ∈ {s1, s2}.

If `(0, γ, j + n + 1) = s1 then {(0, j + n− 1), (1, j + n− 1)} ⊆ A and we
consider j+n−1; (j+n−1 6∈ R, (j+n−1, j, 0)), (j+n−1 6∈ B, (j+n−1, j, 1)),
hence j + n− 1 ∈ W and we are in some of the cases 1 to 5.

If `(0, γ, j + n + 1) = s2 then j + n + 1 = n− 1 (remenber s2 = n− 1)
and j + n + 2 = n which is impossible because {(j, j + n + 2), (n, j)} ⊆ A.

Subcase 8.b. {j + n, j + n + 1} ⊆ B.
In this case, we can assume (n+1, j+n) ∈ A because when (j+n, n+1) ∈ A
we have (j + n, n + 1, j) an h.c. triangle.

Hence (n + 1, j + n) ∈ A and `(j + n, γ, n + 1) ∈ {s1, s2}.
When `(j + n, γ, n + 1) = s1 we have {(j + n + 2, n), (j + n + 2, n + 1)} ⊆ A
and we consider j + n + 2; (j + n + 2 6∈ R, (j + n + 2, n, j)), (j + n + 2 6∈
B, (j + n + 2, n + 1, j)); so j + n + 2 ∈ W and we are in some of the cases 1
to 5.

When `(j + n, γ, n + 1) = s2 we have j + n = 2 (remember s2 = n− 1)
and j + n− 1 = 1 which is impossible because {(j + n− 1, j), (j, 1) ⊆ A.

Case 9. s1 = 1 and 1 ∈ W (remember we are assuming n + 1 ∈ R, and
0 ∈ B).

Subcase 9.a. s2 = n.
In this case (0, n + 1, 1) is an h.c. triangle.

Subcase 9.b. s2 = n− 1.



120 H. Galeana-Sánchez and V. Neumann-Lara

In this case we will assume s2 6= 2 because when s2 = 2 we obtain n− 1 = 2

and D ∼= −→
C 7〈1, 2〉.

2n ∈ B; (2n 6∈ R, (2n, 1, 0)) (notice (2n, 1) ∈ A because s2 6= 2), (2n 6∈ W,
(0, 2n, n + 1)) (notice (2n, n + 1) ∈ A because s2 = n− 1).
n ∈ R; (n 6∈ W, (n, 2n, n + 1)), (n 6∈ B, (n, 1, n + 1)). Hence (1, 0, n) is an
h.c. triangle.

Subcase 9.c. s2 = 2.
In this case we will assume n ≥ 5 because when n = 2, D ∼= −→

C 5〈1, 2〉,
when n = 3, D ∼= −→

C 7〈1, 2〉 and when n = 4, D ∼= −→
C 9〈1, 2〉. Hence we have

`(n + 1, γ, 2n− 1) ≥ 3, 2n− 1 6= 3, and `(3, γ, n + 1) ≥ 3.
2n− 1 ∈ W ; (2n− 1 6∈ R, (1, 0, 2n− 1)), (2n− 1 6∈ B, (n + 1, 2n− 1, 1)).

Consider 3; (3 6∈ R, (3, 1, 0)), (3 6∈ W, (3, n + 1, 0)), hence 3 is blue and
then (3, n + 1, 2n− 1) is an h.c. triangle.

Subcase 9.d. s2 6∈ {2, n− 1, n}.
Let j ∈ (n + 1, γ, 0) be such that `(j, γ, 0) = s2. We will consider two
possibilities:

Let (n + 1, j) ∈ A.
Since s2 6∈ {n− 1, n} we have {(1, n + 1), (j, 1)} ⊆ A.
j ∈ W ; (j 6∈ R, (1, 0, j)), (j 6∈ B, (j, 1, n + 1)). Now consider 2; (2 6∈ R,
(2, 1, 0)), (2 6∈ B, (2, n + 1, j)), hence 2 is white and (2, n + 1, 0) is an
h.c. triangle.

And let (j, n + 1) ∈ A.
In this case we have j = n + 1− s2, 2s2 = n and (n + 1− s2, 1) ∈ A.
j ∈ B; (j 6∈ R, (j, 1, 0)), (j 6∈ W, (j, n+1, 0)), consider n+1−s2; (n+1−s2 6∈
W, (i, j, n+1−s2)) (remember s2 6= n), (n+1−s2 6∈ B, (n+1−s2, 1, n+1));
hence n + 1− s2 is read and then (n + 1− s2, 1, 0) is an h.c. triangle.

Case 10. s1 = 1 and n ∈ W .
This case follows directly from Case 9 by applying Lemma 2.

Case 11. s1 = 1 and s2 ∈ W .
Observe that when s2 = n we obtain (n, 0, n + 1) an h.c. triangle.

And when s2 = n − 1 we can assume s2 6= 2 (because s2 = 2 = n − 1
implies D ∼= C7〈1, 2〉); consider n; we can assume n 6∈ W (because when
n ∈ W we are in Case 10), (n 6∈ R, (n, n− 1, 0)), hence n ∈ B and (n, n− 1,
n + 1) is an h.c. triangle.

So we will assume 2 ≤ s2 ≤ n− 2 and consider two cases:
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Subcase 11.a. s1 = 1, s2 ∈ W , 2 ≤ s2 ≤ n− 2 and (s2, n + 1) ∈ A.
2n ∈ W ; (2n 6∈ R, (2n, s2, 0)), (2n 6∈ B, (2n, s2, n+1)) (notice (n+1, 2n) ∈ A
because s2 ≤ n− 2.
s2 + 1 ∈ W ; (s2 + 1 6∈ R, (s2 + 1, s2, 0), (s2 + 1 6∈ B, (s2 + 1, n + 1, 2n)) when
(s2 + 1, n + 1) ∈ A and (s2 + 1, s2, n + 1) when (n + 1, s2 + 1) ∈ A).
We will assume (n + 1, s2 + 1) ∈ A because when (s2 + 1, n + 1) ∈ A we
have (s2 + 1, n + 1, 0) an h.c. triangle. And since s2 + 1 6= n we have
`(s2 + 1, γ, n + 1) = s2, and 2s2 = n.

Finally, consider j ∈ (n + 1, γ, 0) such that `(j, γ, 0) = s2; (j 6∈ W,
(j, n + 1, 0)), (j 6∈ B, (j, n + 1, s2 + 1)), hence j ∈ R and then (j, s2, 0) is an
h.c. triangle.

Subcase 11.b. s1 = 1, s2 ∈ W , 2 ≤ s2 ≤ n−2 and (n+1, s2) ∈ A. Since
s2 6= n we have that `(s2, γ, n + 1) = s2 and 2s2 = n + 1. Notice that we

can assume s2 > 2 (because when s2 = 2, we have n = 3 and D ∼= −→
C 7〈1, 2〉)

and hence {(0, s2 − 1), (s2 + 1, n + 1)} ⊆ A.
s2 + 1 ∈ B; (s2 + 1 6∈ R, (s2 + 1, s2, 0)), (s2 + 1 6∈ W, (s2 + 1, n + 1, 0)).
2n ∈ B; (2n 6∈ R, (2n, s2, 0)), (2n 6∈ W, (2n, s2 + 1, n + 1)).

Now consider s2 − 1; (s2 − 1 6∈ R, (s2 − 1, 2n, s2)), (s2 − 1 6∈ W, (s2 − 1,
n + 1, 0)), hence s2 − 1 ∈ B and (s2 − 1, n + 1, s2) is an h.c. triangle.

Case 12. s1 = 1 and n + 1− s2 ∈ W .
This case follows directly from Case 11 by applying Lemma 2.

Case 13. s1 = 1 and there exists i ∈ (2, γ, n − 1), i ∈ W such that
{(0, i), (i, n + 1)} ⊆ A(D).

When s2 6= n we have (0, i, n + 1) an h.c. triangle so we will assume
s2 = n.

First notice that we can assume n ≥ 6 (Because; when n = 2 we have

D ∼= −→
C 5〈1, 2〉; when n = 3, D ∼= −→

C 7〈1, 3〉; when n = 4, D ∼= −→
C 9〈1, 4〉; and

when n = 5, D ∼= −→
C 11〈1, 5〉.

First we will analyze the case i = 2; in this case consider n+3; n+3 ∈ B;
(n + 3 6∈ R, (n + 3, 0, 2)), (n + 3 6∈ W, (n + 3, 0, n + 1)) and now consider
n + 5; (n + 5 6∈ R, (n + 5, n + 3, 2)), (n + 5 6∈ B, (n + 5, 2, n + 1)) hence
n+5 ∈ W and (n+5, 0, n+1) is an h.c. triangle (notice that (n+5, 0) ∈ A
because n ≥ 6).

Now suppose i ∈ (3, γ, n− 1).
Consider 1; 1 ∈ R; (1 6∈ W, (1, 0, n + 1)), (1 6∈ B, (1, i, n + 1)).
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Let h ∈ {n + 3, n + 4} be such that (i, h) ∈ A (when i = 3 we take
h = n + 4 and when i > 3 we take h = n + 3, since s1 = 1 and s2 = n we
have (i, h) ∈ A and since n ≥ 6 we have {(h, 0), (h, 1)} ⊆ A); and consider
h; (h 6∈ B, (h, 1, i)), (h 6∈ R, (h, 0, i)) hence h ∈ W and (h, 0, n + 1) is an
h.c. triangle.

Case 14. s1 = 1 and 2n ∈ W .

Subcase 14.a. s1 = 1, 2n ∈ W and s2 = n.
In this case we can assume (as in Case 13 when s2 = n) n ≥ 6.
1 ∈ B, (1 6∈ R, (1, 0, 2n)), (1 6∈ W, (1, 0, n + 1)). n + 2 ∈ B; (n + 2 6∈ R,
(n + 2, 2n, 1)), (n + 2 6∈ W, (n + 2, n + 1, 1)). Now consider 3; (3 6∈ W,
(3, n + 1, 1)), (3 6∈ B, (3, n + 1, 2n)) hence 3 ∈ R and (3, n + 2, 2n) is an
h.c. triangle.

Subcase 14.b. s1 = 1, 2n ∈ W and s2 = n− 1.
In this case (0, 2n, n + 1) is an h.c. triangle.

Subcase 14.c. s1 = 1, 2n ∈ W and s2 = 2.
In this case we will assume n ≥ 5. (Because when n = 2 when obtain

D ∼= −→
C 5〈1, 2〉; when n = 3, D ∼= −→

C 7〈1, 2〉 and when n = 4, D ∼= −→
C 9〈1, 2〉).

2 ∈ W ; (2 6∈ R, (2, 0, 2n)), (2 6∈ B, (2, n + 1, 2n)), now consider 3; (3 6∈ R,
(3, 2, 0)), (3 6∈ B, (3, n+1, 2n)) (notice that (3, n+1) ∈ A because n+1 ≥ 6).
Hence 3 ∈ W and (3, n + 1, 0) is and h.c. triangle.

Subcase 14.d. s1 = 1, 2n ∈ W and s2 6∈ {2, n− 1, n}.
Consider 1; we can assume that 1 6∈ W because when 1 ∈ W we are in
Case 9 and we are done, (1 6∈ R, (1, 0, 2n)). Hence 1 ∈ B and (1, n + 1, 2n)
is an h.c. triangle.

Case 15. s1 = 1 and n + 2 ∈ W .
This Case follows directly from Case 14 by applying Lemma 2.

Case 16. s1 = 1, and i ∈ (n + 3, γ, 2n− 1) with `(i, γ, 0) = s2 satisfies
i ∈ W .

We can assume 1 6∈ W (see Case 9), (1 6∈ R, (1, 0, i)) hence 1 ∈ B.
Clearly in this case s2 6∈ {n, n− 1}, so {(i, 1), (1, n + 1)} ⊆ A.

When (i, n + 1) ∈ A we have (i, n + 1, 0) is an h.c. triangle and when
(n + 1, i) ∈ A we obtain (n + 1, i, 1) an h.c. triangle.

Case 17. s1 = 1 and n + 1 + s2 ∈ W .
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This case follows directly from Case 16 and Lemma 2.

Case 18. s1 = 1 and there exists i ∈ (n + 1, γ, 0) ∩ W such that
{(n + 1, i), (i, 0)} ⊆ A.

Along this case we will assume without more explanation that there is
no vertex j ∈ (0, γ, n + 1) ∩W . (because when such a vertex exists we are
in some of the cases 9 to 17).
Clearly, when s2 = n we have (0, n + 1, i) an h.c. triangle.

Subcase 18.a. s2 = n− 1.
We have {(i + n− 1, i), (i, i + n), (i + n + 1, i), (i, i + n + 2)} ⊆ A.
i + n − 1 ∈ B; (i + n − 1 6∈ R, (i + n − 1, i, 0)). i + n ∈ B; (i + n 6∈ R,
(i + n, i + n− 1, i)).
i+n+2 ∈ R; (i+n+2 6∈ B, (i+n+2, n+1, i)). i+n+1 ∈ R; (i+n+1 6∈ B,
(i + n + 1, i, i + n + 2)).

When (0, i + n + 1) ∈ A we obtain (0, i + n + 1, i) an h.c. triangle hence
we can assume (i + n + 1, 0) ∈ A and then `(0, γ, i + n + 1) ∈ {s1, S2}; if
i + n + 1 = 1 we have i + n = 0 and i = n + 1 which is impossible (because
n + 1 ∈ R and i ∈ W ); so i + n + 1 = n− 1, i = 2n− 1 and `(i, γ, 0) = 2.

When (i+n, n+1) ∈ A we obtain (i+n, n+1, i) an h.c. triangle hence
we can assume (n + 1, i + n) ∈ A and then `(i + n, γ, n + 1) ∈ {s1, s2}; if
i+n = n we have i = 0 which is impossible (i ∈ W and 0 ∈ B); so i+n = 2,
i = n + 3 and `(n + 1, γ, i) = 2.

Since `(i, γ, 0) = `(n+1, γ, i) = 2 we conclude n = 4 and D ∼= −→
C 9〈1, 3〉.

Subcase 18.b Assume the hypothesis on Case 18, s2 6∈ {n, n− 1}.
Since s2 6∈ {n, n − 1} we have {(i, i + n − 1), (i, i + n), (i + n + 1, i),
(i + n + 2, i)} ⊆ A.

First suppose s2 = 2; in this case: (0, i + n + 2) ∈ A and (i + n +
2 6∈ R, (0, i + n + 2, i)) hence i + n + 2 ∈ B; (i + n − 1, n + 1) ∈ A and
(i + n − 1 6∈ B, (i + n − 1, n + 1, i)) hence i + n − 1 ∈ R. Also we have
(i + n− 1, i + n + 2) ∈ A and then (i + n− 1, i + n + 2, i) is an h.c. triangle.

Now suppose s2 6= 2; in this case (i + n− 1, i + n + 1, i) is a triangle, so
we can assume {i + n− 1, i + n + 1} ⊆ R or {i + n− 1, i + n + 1} ⊆ B.

When {i + n − 1, i + n + 1} ⊆ R we have (i + n + 1, 0) ∈ A (because
when (0, i+n+1) ∈ A we obtain (0, i+n+1, i) an h.c. triangle), and since
i + n + 1 > 1, `(i + n + 1, γ, 0) = s2. It follows that (0, i + n + 2) ∈ A,
(i + n + 2 6∈ R, (i + n + 2, i, 0)) and i + n + 2 ∈ B.
Since i + n + 2 ∈ B we have i + n ∈ B, (i + n 6∈ R, (i + n, i + n + 2, i)).
i + n ∈ B implies (n + 1, i + n) ∈ A (in other case (i + n, n + 1, i) is an h.c.
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triangle), and `(i + n, γ, n + 1) = s2 (because i 6= 0 and then i + n 6= n).
So; when s2 6= 3 we have (i + n− 1, i + n + 2, i) an h.c. triangle and when

s2 = 3 we obtain n + 1 = 5 and D ∼= −→
C 9〈1, 3〉.

When {i+n−1, i+n+1} ⊆ B we have (n+1, i+n−1) ∈ A (otherwise
(i + n − 1, n + 1, i) is an h.c. triangle) and since i + n − 1 6= n we obtain
`(i+n− 1, γ, n+1) = s2. Since i+n 6= n we observe that (i+n, n+1) ∈ A
and then i + n ∈ R; (i + n 6∈ B, (i + n, n + 1, i)); it follows i + n + 2 ∈ R;
(i + n + 2 6∈ B, (i + n, i + n + 2, i)), and we can assume (i + n + 2, 0) ∈ A
(when (0, i + n + 2) ∈ A the triangle (0, i + n + 2, i) is an h.c. triangle),
and then i + n + 2 = s2 (clearly i + n + 2 6= 1). Finally, observe that when
s2 6= 3(i + n− 1, i + n + 2, i) is an h.c. triangle and when s2 = 3 we obtain
n = 2 (remember i+n+2 = s2 and i+n−1 = n+1−s2) which is impossible
because s2 ≤ n.

Case 19. s2 = n, s1 6= 1 and s1 ∈ W .

Subcase 19.a. s2 = n, s1 6= 1, s1 ∈ W and 2s1 < n.
Let j ∈ (n + 1, γ, 0) be such that `(j, γ, 0) = s1.

We have {(s1, n + 1), (n + 1, j), (0, j)} ⊆ A.
j ∈ W ; (j 6∈ R, (j, s1, 0)), (j 6∈ B, (j, s1, n + 1)). Notice s1 6= n− 1 because
n ≥ 2, then we have {(2n, s1), (n + 1, 2n)} ⊆ A. And consider 2n; (2n 6∈ W,
(2n, 0, n + 1)), (2n 6∈ B, (2n, s1, n + 1)) hence 2n ∈ R and then (2n, 0, j) is
an h.c. triangle.

Subcase 19.b. s2 = n, s1 6= 1, s1 ∈ W and 2s1 = n.
In this case we will assume s1 ≤ n− 2 (because when s1 = n− 1 we obtain

D ∼= −→
C 5〈1, 2〉).

2n ∈ R; (2n 6∈ W, (2n, 0, n + 1)), (2n 6∈ B, (2n, s1, n + 1)).
1 ∈ W ; (1 6∈ R, (1, s1, 0)), (1 6∈ B, (1, s1, n + 1)). n + 2 ∈ B; (n + 2 6∈ W,
(n + 2, 0, n + 1)), (n + 2 6∈ R, (n + 2, 0, 1)). Finally, consider j; (j 6∈ W,
(j, 2n, 0)), (j 6∈ R, (j, 1, n + 2)) hence j ∈ B and (j, 2n, i) is an h.c. triangle.

Subcase 19.c. s2 = n, s1 6= 1, s1 ∈ W and 2s1 > n.
When 2s1 = n + 1 we have (0, n + 1, s1) an h.c. triangle. So we will assume
2s1 ≥ n + 2. (notice that 2s1 ≥ n + 2 implies n + 1− s1 ∈ (0, γ, s1)).

Consider n+1− s1; n+1− s1 ∈ W ; (n+1− s1 6∈ R, (n+1− s1, s1, 0)),
(n + 1− s1 6∈ B, (n + 1− s1, s1, n + 1)). Here we consider two possibilities:

Let s1 = n− 1.
We will assume n ≥ 4 (because when n = 2, D ∼= C5〈1, 2〉 and when n = 3,
D ∼= C7〈2, 3〉). Observe that in this case n + 1− s1 = 2.
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n ∈ W ; (n 6∈ R, (n, 0, 2)), (n 6∈ B, (n, n + 1, 2)). Consider the vertex 4;
4 ∈ W ; (4 6∈ R, (4, n, 0)) (when n = 4 we are done because we proved
n ∈ W ), (4 6∈ B, (4, n + 1, 2)). Now consider n + 3; n + 3 ∈ B; (n + 3 6∈ R,
(n+3, 0, 2)), (n+3 6∈ W, (n+3, 0, n+1)). We conclude that (n+3, 4, n+1)
is an h.c. triangle.

And let s1 ≤ n− 2.
First we prove that (n + 1− s1 + 1) ∈ W . When n + 1− s1 + 1 = s1 we are
done, when n + 1− s1 + 1 6= s1 we have (n + 1− s1 + 1 6∈ R, (n + 1− s1 +
1, s1, 0)), (n + 1− s1 + 1 6∈ B, (n + 1− s1 + 1, n + 1, n + 1− s1)).

Now 1 ∈ W ; (1 6∈ R, (1, s1, 0)), (1 6∈ B, (n+1, 1, s1)). Finally, n+2 ∈ B;
(n + 2 6∈ R, (n + 2, 0, 1)), (n + 2 6∈ W, (n + 2, 0, n + 1)) . We conclude that
(n + 2, n + 1− s1 + 1, n + 1) is an h.c. triangle.

Case 20. s2 = n, s1 6= 1 and n + 1− s1 ∈ W .
This case follows directly from Lemma 2 and Case 19.

Case 21. s2 = n, s1 6= 1 and the vertex i ∈ (n + 1, γ, 0) such that
`(i, γ, 0) = s1 is white.

Subcase 21.a. 2s1 < n.
(s1 6∈ R, (s1, 0, i)), (s1 6∈ B, (s1, n+1, i)) hence s1 ∈ W and we are in Case 19.

Case 21.b. 2s1 = n.
In this case we will assume s1 6= n− 1 (because when s1 = n− 1 we obtain

D ∼= −→
C 5〈1, 2〉).

n + 2 ∈ R; (n + 2 6∈ B, (n + 2, i, n + 1)), (n + 2 6∈ W, (n + 2, 0, n + 1)).
2n ∈ B; (2n 6∈ R, (2n, 0, i)), (2n 6∈ W, (2n, 0, n + 1)). s1 ∈ B; (s1 ∈ R,
(s1, i, 2n)), (s1 6∈ W, (s1, n + 1, 2n)). 1 ∈ B; (1 6∈ R, (1, j, i)), (1 6∈ W,
(1, n + 2, 0)).

Hence we have (1, n + 2, i) an h.c. triangle.

Subcase 21.c. 2s1 ≥ n + 1.
Let s1 = n− 1.

In this case we will assume n ≥ 4. (Because when n = 2, D ∼= −→
C 5〈1, 2〉

and when n = 3, D ∼= −→
C 7〈2, 3〉).

In this case i = n + 2 and {(0, n + 2), (2n, n + 1)} ⊆ A(D), moreover
since n ≥ 4 we have n + 3 < 2n.
2n ∈ W ; (2n 6∈ R, (2n, 0, n + 2)), (2n 6∈ B, (2n, n + 1, n + 2)). n + 3 ∈ W ;
(n + 3 6∈ R, (n + 3, 0, n + 2)), (n + 3 6∈ B, (n + 3, 2n, n + 1)). So we have
(0, n + 1, n + 3) an h.c. triangle.



126 H. Galeana-Sánchez and V. Neumann-Lara

And let s1 ≤ n− 2.
n + 1 + s1 ∈ W ; (n + 1 + s1 6∈ R, (n + 1 + s1, 0, i)), (n + 1 + s1 6∈ B, (n + 1
+s1, n + 1, i)), n + 2 ∈ R; (n + 2 6∈ B, (n + 2, n + 1 + s1, n + 1)), (n + 2 6∈ W,
(n + 2, 0, n + 1)), i + 1 ∈ W , when i + 1 = n + 1 + s1 we have i + 1 ∈ W
and when i + 1 6= n + 1 + s1 we have; (i + 1 6∈ R, (i + 1, 0, i)), (i + 1 6∈ B,
(i + 1, n + 1 + s1, n + 1)). 1 ∈ R; (1 6∈ B, (1, n + 2, i)), (1 6∈ W, (1, n + 2, 0)).
So we obtain (1, i + 1, 0) an h.c. triangle.

Case 22. s2 = n, s1 6= 1 and n + 1 + s1 ∈ W .
This case follows directly from Lemma 2 and Case 21.

Case 23. s2 = n, s1 6= 1 and there exists i ∈ (n + 1, γ, 0)∩W such that
{(n + 1, i), (i, 0)} ⊆ A(D).

In this case (0, n + 1, i) is an h.c. triangle.

Case 24. s2 = n, s1 6= 1 and there exists i ∈ (0, γ, n + 1)∩W such that
{(0, i), (i, n + 1)} ⊆ A(D).

In this case we will assume that V (n + 1, γ, 0) ∩W = ∅ (because when
there exists x ∈ V (n + 1, γ, 0) ∩W we are in some of the previous cases).

Subcase 24.a. s1 = n− 1.

In this case we will assume n ≥ 7 (When n = 2, D ∼= −→
C 5〈1, 2〉; when n = 3,

D ∼= −→
C 7〈2, 3〉; when n = 4, D ∼= −→

C 9〈3, 4〉; when n = 5, D ∼= −→
C 11〈4, 5〉 and

when n = 6, D ∼= −→
C 13〈5, 6〉).

Since s1 = n− 1 we have {(i + n− 1, i), (i, i + n + 2)} ⊆ A.
i + n − 1 ∈ R; (i + n − 1 6∈ B, (i + n − 1, i, n + 1)) (Notice that since
s1 = n− 1, the hypothesis on Case 24 imply i ∈ (3, γ, n− 2)). i+n+2 ∈ B;
(i + n + 2 6∈ R, (i + n + 2, 0, i)).

When i + n + 3 6= 0 and n + 2 6= i + n − 1, we have i + n + 3 ∈ B;
(i+n+3 6∈ R, (i+n+3, i, i+n+2)). n+2 ∈ R; (n+2 6∈ B, (n+2, i+n−1, i));
and then (n + 2, i + n + 3, i) is an h.c. triangle.

When i+n+3 = 0 we have i = n−2 and since n ≥ 7 we also have n+2 6=
i+n−1 and n+3 6= i+n−1. Consider n+3; (n+3 6∈ B, (n+3, i+n−1, i))
hence n + 3 ∈ R and (n + 3, 0, i) is an h.c. triangle.

When n + 2 = i + n − 1 we have i = 3 and since n ≥ 7 we have 2n 6=
i + n + 2 and 2n− 1 6= i + n− 2. Consider 2n− 1; (2n− 1 6∈ R, (2n− 1, i,
i + n + 2)) hence 2n− 1 ∈ B and (2n− 1, i, n + 1) is an h.c. triangle.

Subcase 24.b. s1 ≤ n− 2.
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Since s2 = n and s1 ≤ n− 2 we have {(i, i + n− 1), (i + n, i), (i, i + n + 1),
(i + n + 2, i)} ⊆ A.

Let i + n + 2 = 0.
In this case we have i = n− 1, i+n+1 = 2n ∈ B; (i+n+1 6∈ R, (i+n+1,
i+n+2, 0)), n ∈ B; (n 6∈ R, (n, 0, n−1)), (n 6∈ W, (n, n+1, i+n+1)), i+n ∈
B, (i+n 6∈ R, (i+n, n−1, n)), i+n−1 ∈ B; (i+n−1 6∈ R, (i+n−1, i+n, i));
now notice that we can assume (i + n, n + 1) ∈ A (When (n + 1, i + n) ∈ A,
(n + 1, i + n, i) is and h.c. triangle), hence `(n + 1, γ, i + n) = s1 = n − 2.
Finally, consider i+n−2; we can assume i+n−2 > n+1 (when i+n−2 = n,

D ∼= −→
C 7〈1, 3〉 and when i + n− 2 = n + 1, D ∼= −→

C 9〈2, 4〉); since s1 = n− 2
and s2 = n we have {(i+n− 2, i), (n, i+n− 2), (n+1, i+n− 2)} ⊆ A; then
(i + n− 2 6∈ B, (i + n− 2, i, n + 1)), so i + n− 2 ∈ R and (i + n− 2, i, n) is
an h.c. triangle.

And let i + n + 2 6= 0.
First we prove that we can assume (n + 2, i) ∈ A.

Suppose (i, n+2) ∈ A; then (n+2 6∈ R, (n+2, 0, i)), so n+2 ∈ B. Now
consider i + n; i + n 6= n + 2((i, n + 2) ∈ A, and (i + n, i) ∈ A), i + n 6=
n + 1(s2 = n).

When {(n+2, i+n), (n+1, i+n)} ⊆ A we have (i+n 6∈ B, (i+n, i, n+1))
hence i+n ∈ R and (i+n, i, n+2) is an h.c. triangle, so we have (i+n, n+1)
∈ A or (i+n, n+2) ∈ A and then `(n+1, γ, i+n) = s1 or `(n+2, γ, i+n) = s1;
in any case and since i+n+2 6= 0 we have {(n+2, i+n+2), (n+1, i+n+2)}
⊆ A. Finally, consider i + n + 2, (i + n + 2 6∈ R, (i + n + 2, i, n + 2)) hence
i + n + 2 ∈ B and (i + n + 2, i, n + 1) is an h.c. triangle.

Now we prove that we can assume (i, 2n) ∈ A.
Suppose (2n, i) ∈ A, then (2n 6∈ B, (2n, i, n + 1)), hence 2n ∈ R. When

{(i + n + 1, 0), (i + n + 1, 2n)} ⊆ A (Notice that since i + n + 2 6= 0 we have
i + n + 1 < 2n), we have (i + n + 1 6∈ R, (i + n + 1, 0, i)) hence i + n + 1 ∈ B
and (i + n + 1, 2n, i) is an h.c. triangle. So we have (0, i + n + 1) ∈ A or
(2n, i+n+1) ∈ A (and since i+n+1 6= n+1 we have `(i+n+1, γ, 0) = s1

or `(i + n + 1, γ, 2n) = s1). So when i + n − 1 6= n + 1 we have {(i + n −
1, 0), (i+n−1, 2n)} ⊆ A and consider i+n−1, (i+n−1 6∈ R, (i+n−1, 0, i))
hence i+n−1 ∈ B and (i+n−1, 2n, i) is an h.c. triangle. Now we analyze
the case when i+n−1 = n+1 and (0, i+n+1) ∈ A; in this case s1 = n−2
and consider i + n + 3; Since s1 = n − 2 we have (i, i + n + 3) ∈ A and
we can assume i + n + 3 < 2n (when i + n + 3 = 0 we have n = 4 and

D ∼= −→
C 9〈2, 4〉 and when i + n + 3 = 2n, we have n = 5 and D ∼= −→

C 11〈3, 5〉),
(i + n + 3 6∈ R, (i + n + 3, 0, i)) hence i + n + 3 ∈ B and (i + n + 3, 2n, i)
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is an h.c. triangle. Finally, analyze the case when i + n − 1 = n + 1 and
(2n, i + n + 1) ∈ A in this case s1 = n − 3 and consider i + n + 4 we have
(i, i + n + 4) ∈ A and we can assume i + n + 4 < 2n (when i + n + 4 = 0 we

obtain n = 5 and D ∼= −→
C 11〈2, 5〉 and when i + n + 4 = 2n we obtain n = 6

and D ∼= −→
C 13〈3, 6〉); (i+n+4 6∈ R, (i+n+4, 0, i)) hence i+n+4 ∈ B and

(i + n + 4, 2n, i) is an h.c. triangle.
So we can assume `(2n, γ, i) = `(i, γ, n + 2) = s1.

n + 2 ∈ R; (n + 2 6∈ B, (n + 2, i, n + 1)). 2n ∈ B; (2n 6∈ R, (2n, 0, i)).
Finally, consider 1; (1 6∈ W, (0, 1, n + 2)), (1 6∈ R, (1, i, 2n)) hence 1 ∈ B

and (1, i, n + 1) is an h.c. triangle.
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