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Abstract

A tournament is said to be tight whenever every 3-colouring of its
vertices using the 3 colours, leaves at least one cyclic triangle all whose
vertices have different colours. In this paper, we extend the class of
known tight circulant tournaments.
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1 Introduction

Let Zoym41 be the set of integers mod 2m + 1. If J is a nonempty subset
of Zom+1\{0} such that [{j,—j} N J| = 1 for every j € Zop+1\{0}, then

the circulant tournament E)QmH(J ) is defined by V(62m+1(<] ) = Z2m+1,
A(Camir (1)) = {(i,5): i,j € Zoms1 and j — i € J}. Finally, for § C I,

82m+1<5 ) will denote the circulant tournament 6)2m+1(¢] ) where J = (I,,U
(=S)H\S and I, = {1,2,...,m} C Zopm41-

In [5], the acyclic disconnection @ (D) (resp: the 6)3—]‘7"66 disconnection
w3(D)) of a digraph D, was defined to be the maximum possible number of
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connected components of a digraph obtained from D by deleting an acyclic
set of arcs (resp: a 6)3—free set of arcs). It was proved there [5, Theorem 2.4]

that U;(D) = W3(D) + 1 is the minimum number 7 such that every r-
colouring of V(D) using all the colours, leaves at least one heterochromatic
cyclic triangle (i.e., a cyclically oriented triangle whose vertices are coloured
with 3 different colours). Some related topics are considered in [6].

In [2], the heterochromatic number of a 3-graph (V, E) (hypergraph, all
whose edges have cardinality 3) was defined to be the minimum number of
colours r such that every vertex r-colouring using all the colours leaves at
least one heterochromatic 3-edge; 3-graphs with heterochromatic number 3
were called tight. Tight 3-graphs have been studied in [1, 2, 3].

As remarked in [5], if T is any tournament, U;(T) is just the hete-
rochromatic number of the 3-graph Hs(T') = (V(T'),3(T")) where 3(T) =

{SCV(T) : T[S] = 63} We consequently define a tournament 7" to be

tight whenever w5 (T) = 3, namely when every 3-colouring of its vertices
using the 3 colours, leaves at least one heterochromatic cyclic triangle (cyclic
triangle all whose vertices have different colours).

It was proved in [5, Theorem 4.11] that for m > 2, 62m+1<s> is tight
provided s # 2.

+
In this paper, we prove that if 1 < s1 < s3 < m then Wy (5)2m+1(51, S2))
is tight for all but a small set of pairs (s1,s2) (Theorem 8) and the excep-
tional pairs are determinated.

2 Preliminaries

We give here some definitions apart from those given in the Introduction. If
D is a digraph, V(D) and A(D) (or simply A) will denote the sets of vertices
and arcs of D respectively. If v = (0,1,...,m) is a directed cycle then we
denote by (i,7,7) the ij-directed path contained in 7, and by £(i,7,j) its
length. A vertex r-colouring of a digraph is said to be full if it uses the r
colours. A heterochromatic cyclic triangle (h.c. triangle) is a cyclic triangle
whose vertices are coloured with 3 different colours. For general concepts
we refer the reader to [4].
We will need the following two Lemmas:

Lemma 1. Let f be a vertex k-colouring of the circulant tournaments
Com+1(J) which leaves no h.c. triangle. If o is either an automorphism
or an antiautomorphism of Com11(J) then f.o leaves no h.c. triangle.
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Lemma 2. If the circulant tournament Copmi1(J) has a full vertexr 3-
colouring f which leaves no h.c. triangle then it has another such 3-colouring
I such that 0 and m + 1 belong to different chromatic classes. Moreover, if
t belongs to a third chromatic class of f’, then there is another 3-colouring
f" leaving no h.c. triangle and such that 0, m + 1 and m + 1 —t belong to
different chromatic classes of f”.

Proof. Cypi1(J) contains two vertices ¢ and i+m+1 belonging to different
chromatic classes of f. Let o be an automorphism of Co,+1(J) such that
a(0) =i and a(m+1) =i+ m+ 1, take f' = f.a and apply Lemma 1.
To prove the second part let 5 the antiautomorphism defined by £(j) =
—j+m+1, take f” = f’.3 and apply Lemma 1. |

Remark 1. In what follows, when we refer the reader to Lemma 2, we are
thinking of the antiautomorphism £.

In [2] Neumann-Lara proved the two following results:

Theorem 1 [2]. Every full vertex 3-colouring of the circulant tournaments,
ﬁ’gnﬂ(]n) and 52n+1<s> with (2n + 1,s) # (9,2) leaves an h.c. triangle.
+ —

(Co(2)) = 4.

—
Moreover w

Theorem 2 [2]. There exists a full vertex 3-colouring of the following cir-
culant tournaments which leaves no h.c. triangle: 89(2% 5)3[5)5(1, 2)], and

+
6)5(1, 2)[83] Moreover for each of these tournaments w5 = 4.

Theorem 3. FEvery full vertex 3-colouring of the following circulant tour-
— — — —

naments leaves an h.c. triangle: C5(1,2), C7(1,2), C7(1,3), C~(2,3),

— — — — — — —

CQ<1a2>7 09<173>7 CQ<274>7 09<374>7 011<175>7 Cll<273>7 Cll<2>5>a

— — — — — —

C11 (3,5), C11(4,5), C13(2,3), C13(2,4), C13(3,6) and C13(5,6).

Proof. The proof will follow from Lemma 1 and Theorem 1 by applying
an automorphism to each circulant tournament ennounced in Theorem 3
which transforms it in some circulant tournament considered in Theorem 1.
Along the proof of Theorem 3 and Theorem 4. We will write D1 —— Ds to

mean that the function f;(x) = iz is an isomorphism from D; onto Ds.

C5(1,2) = Cs(lr); O7(1,2) = T(3); C1(1,3) = CTr(I3); Cr(2,3) =
—_

Cr(1); Co(1,2) =2 To(Ls); To(1,3) = To(2,4) =2 To(1,2) =3 To(Iu);
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Theorem 4. There exists a full vertex 3-colouring of the following circulant
tournaments which leaves an h.c. triangle: 69(2,3>,€9(1,4),615(2,5>

— S+
and C15(3,4). Moreover ws =4 for each of these tournaments.

Proof. The proof will follow from Lemma 1 and Theorem 2 by aplying:
Consider the automorphism ¢: 69(2,3) — ?9(2) defined as follows:
e(0) = 0, v(2) = 2, (3) = 6, p(4) = 1, ¢(5) = 8, p(6) = 3,

o(7) = 7 and ¢(8) = b5; 6)9(1,4) = 69(2,3> Rt 89(2); because of [2]
— — — — — —
Cl5<2,5> = 03[05(12)] and 013<3,4> = C5(IQ)[C3]. |

3 Main Result

Theorem 5. Fvery full vertex 3-colouring of the circulant tournament
€2n+1<81782> such that 1 < 51 < s9 < n and 82n+1<81,82> & {65(3,4},

— — —
C15(2,5), C9(2,3 ), C9<1,4>} leaves an h.c. triangle.

Proof. Consider any full vertex 3-colouring of D = 62n+1<51,32> as in
the hypothesis with colors red, blue and white and denote by R, B and
W (respectively) the chromatic classes. Without loss of generality, we can
assume n+1 € R and 0 € B. Along the proof we will denote (i & W, (4, j, k))
to mean that we can assume the vertex i is not white because if the vertex
i is white, then we have the h.c. triangle (i, j, k) and we are done.

The sequence v = (0,1,2,...,2n,0); will be a directed cycle when
s1 # 1 and the sequence v2 = (0,2n,2n — 1,2n — 2,...,0) a directed cycle
when s1 = 1.

We will make the proof by considering several cases

Case 1. Let 2 < s1 < s9 <n —1 and there exists i € (0,v7,n+1)NW
such that {(0,4), (i,n+ 1)} C A(D).
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Clearly, in this case (0,i,n + 1) is an h.c. triangle.

Case 2. Let 2 < 51 < s < n — 1 and the vertex s; € W. (notice
(s1,0) € A(D)).

Subcase 2.a. Assume s1 + s9 < n.

Let j € (n+1,7,0) such that £(j,v,0) = s7.

Since s1 + s2 < n we have {(s;,n + 1), (n+ 1,7), (4,s1)} € A(D).
jeW:(j¢€R,(4,%5,0), (¢ B, (j,s1,n+1)). Each vertex t with
t € (0,7,s1) — {0,817} is blue: (t € W, (t,n+1,0)), (t € R, (t,51,0)).

Now we consider several possibilities:

If s; and s9 are not consecutives (s # s1 + 1) then (j,1,n + 1) is an
h.c. triangle.

If s; and sg are consecutives (sy = s1 + 1), we have:

Let s1 > 2.
2€(0,v,s1) —{0,s1},s0 2 € B and (2,n+1,j) is an h.c. triangle.

When s; = 2 we have s9 = 3 and consider k € (n + 1,v,0) such that
l(k,~,0) = s9; since s; + s2 < n we have {(k,s1),(0,k)} € A(D), and
(k € R, (k,s1,0)).

If (n+1,k) € A then (k¢ B, (k,s1,n+1)). Hence k € W and (k, 1,
n+ 1) is an h.c. triangle. When (k,n + 1) € A we have £(n + 1,7, k) = s9;
so 2s9 =n, n =6 and D = C;3(2, 3).

Subcase 2.b. Assume s; + s9 > n + 1.

Let k € (0,7,n+ 1) such that ¢(k,v,n) = sz (notice (n,k) € A), Since
s1+s2 > n+1and sy < n we have k € (0,v,s1) — {0,s1}; k is blue:
(k€ R, (k,51,0)), (kg W,(k,n+1,0)); n is blue: (n ¢ R, (n,k,s1) when
(s1,n) € A; and (n, s1,0) when (n,s1) € A), (n &€ W, (n,n+ 1,0)).

Now we will prove that we can assume (s1,n+ 1) € A. Suppose (n+ 1,
s1) € A; hence l(s1,7,n+ 1) € {s1,s2}. When (s1,n) € A, (n+1,51,n)
is an h.c. triangle. So (n,s1) € A, £(s1,7,n+ 1) = s2, s9 = s1 + 1 and
so+s1 = n+1. Now, when s; = 2 we have sy = 3, n+1 = 5and D = Cy(2, 3).
And when s; > 2 we consider,n—1;n—1€ W: (n—1¢ R,(n—1,n,s1)),
(n—1¢ B,(n—1,n+1,s1) (notice s; > 2). And we have (n —1,n+ 1,0)
an h.c. triangle. So we will assume (s;,n + 1) € A. Now k+1 € W:
(k+1¢R,(k+1,51,0)),(k+1¢ B,(k+1,s1,n+ 1)), (notice k + 1 # s;
since (s;,n+1)€ Aand (n+1,k+1) € A).

If (k+1,n) € A, then (k+ 1,n,n+ 1) is an h.c. triangle, so we will
assume (n, k+ 1) € A (notice that £(k+1,v,n) = s1,(n+1,k+2) € A and
k+2#s1).
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Finally, consider k+2: (k+2 ¢ R, (k+2,51,0)),(k+2 ¢ B, (k+ 2, s1,
n+1)); hence k + 2 is white and (k + 2,n,n + 1) is an h.c. triangle.

Subcase 2.c. 81 + $9 = n.
First assume s; # 2.

Let k,t € (n+ 1,7,0) such that ¢(k,v,0) = sy and £(t,v,s1) = sa.
ke B:(k¢&R,(ks,0), (kW (k,n+1,0);n+2€ B: (n+2¢ R,
(n+2,k,s1), (n+2¢& W, (n+2,kn+1));te B:(t¢&R,(tks1)),
(t g W,(t,k,n+ 1) when (n+1,t) € Aand (t,n+1,0) when (t,n+1) € A).
(Notice that (t,n + 1) € A implies (0,t) € A because s; + s2 + n); also
1eB: (1€ R,(1,5,0)), (1 £ W,(1,n+1,0)).

Now we consider two possibilities:

When s; and sy are not consecutives (s2 # s1 + 1) we consider 2n; (2n ¢
B, (2n,s1,n + 1)), (Notice (n+ 1,2n) € A because s; > 2 and s1 + s2 = n,
so s < n—2), (2n € R,(2n,s1,n + 1)) (Notice (n + 2,2n) € A because
{s1,s2} # {2,n — 2}). Hence 2n is white and then (2n,1,n + 1) is an h.c.
triangle, (notice again that (2n,1) € A because s; # 2).

When s; and s9 are consecutives (s2 = s1+1), observe that when s; = 2

we have so =3 and D = 6)11<2, 3). So we will assume s; > 2, and consider
2n—1; 2n—1¢ B,(2n—1,s1,n+ 1)) (notice (n+ 1,2n — 1) € A because
s1 # 2 and hence s #n —2), 2n—1¢ R,(2n — 1,s1,n + 2)) (notice that
we can assume (n + 2,2n — 1) € A because if (2n — 1,n + 2) € A then

s9=n—3,8=3,8=4,n=T7and D = 815(3,4)). Hence 2n — 1 is white
and then (2n —1,1,n + 1) is an h.c. triangle (notice that we can assume
(2n —1,1) € A because when (1,2n — 1) € A we have s; = 3, so =n — 3,
so=4,n="Tand D = C15(3,4)).

Now assume s; = 2, so =n — 2.

When sy = s1 + 1 we obtain D =2 6)11(2, 3); so we will assume sy # s1 + 1.
ne€B:(n¢&R,(n20)), (ngW (nn+10);1e B:(1¢&R,(1,2,0)));
(1¢ W,(1,n+1,0)); 3 € B:(3 ¢ R,(3,1,2)), (3 & W, (3,n,n+ 1));
n+3€B:n+3¢R, (n+3,20)), n+3&W, (n+3n+1,0));
n+2eB:n+2¢ R (n+212), (n+2¢&W, (n+2,nn+1));
Ae€B:(4¢R (423), A¢gW, 4n+1n+2)2neR: (2n¢ B,
(2n,2,n 4+ 1)) (notice that (2n,2) € A because s; = 2 and sy # s1 + 1),
(2n &€ W, (2n,4,n+1)) (notice that we can assume (2n,4) € A, because when

(4,2n) € A we obtain sy =5, n—2 =5, n=7and D 2 C 15(2,5)). Finally
consider n— 3; first notice that (n—3,2n) € A because £(2n,vy,n—3) =n—2
and (0,n —3) € A because sz # s1 + 1. We have (n—3 ¢ W, (n — 3,2n,0)).
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We can assume (2,n—3) € A because if (n—3,2) € A then £(2,v,n—3) = s1,

sp=2s1+1and D 6)15<2,5>. So (n—3 ¢ R, (n—3,n,2)); we conclude
that n—3 is blue and then (n—3,2n,2) is an h.c. triangle (notice (2n,2) € A
because sy # s1 + 1).

Case 3. Let 2 <s; <8y <n-—1and the vertexn+1—3s1 € W.
This case follows directly from Case 2 by applying Lemma 2.

Case 4. Let 2 < 51 < s3 < n — 1 and the vertex so € W. (notice
(82, 0) c A)

Subcase 4.a. Assume the hypothesis on Case 4 and s; + s2 < n. First
we prove that we can assume (sg,n + 1) € A. Suppose (n + 1,s2) € A,
then ¢(sg,7y,n + 1) = sy (since $1 + s2 < n), 2so =n+ 1 and sg # s1 + 1
(sg = s1 + 1 implies s1 + s = n).
neR (ngW,(0,n,n+1)), (n¢B,(n,n+1,s2)) (notice that (s2,n) € A
because s1 # sg — 1).
so—1eW: (sa—1¢& R, (s2—1,52,0)) (notice s; # sa — 1), (s2 — 1 ¢ B,
(s2 —1,s2,m)). So (0,52 —1,n 4 1) is an h.c. triangle.

We will assume (s2,n+ 1) € A.
Let j € (n+ 1,7,0) such that £(j,v,0) = s;; since s; + s < n we have
(G 52), (n+1,)} C A,
Jew: (.] ng (.77 52>O))7 (.] gBa (j,SQ,Tl‘f‘ 1))

Now consider sp, since s; + s < n we have {(j, s1), (s1,n + 1)} C A.
and hence (s; € R, (s1,0,7)), (s1 € B,(s1,n+1,7)). We conclude s; € W
and we are in Subcase 2.a.

Subcase 4.b. Assume s1 + s9 > n + 1.

Notice that when s14+s3s =n+1, ss =n+1—s1, hencen+1—s; € W and
we are in Case 3. So we will assume s1 + so > n + 2. Consider n + 1 — sq;
we can assume n + 1 — s; € W because when n+ 1 — s; € W we are in
Case 3; (n+1—s1 ¢ B,(n+1—3s1,82,n+1)); hencen+1—3s; € R. So
when (0,n+1—s1) € A we have (n+1—s1,52,0) an h.c. triangle. Then we
can assume and we will assume (n + 1 —s1,0) € A, and then 2s; = n + 1.
Consider n4+1—s9; n+1—s2 € R: (n+1—s2 € W, (n+1—s2,n+1—s51,0)),
(n+1—s2¢ B,(n+1—s2,s9,n+1)) when (s2,n+1—s2) € A). So when
(n+1—s92,80) € Aand (n+1—s2,n+1—s1,52) when (n+1—s9,52) € A
we have (n + 1 — s2,52,0) an h.c. triangle (notice (0,n 4+ 1 — s2) € A since
2s1=n+1land s1+s2>n+2implyn+1—s5 € (0,7,n+1—351 =51)).
Then we can assume and we will assume (s2,n + 1 — s9) € A.
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Notice that s; and sy are not consecutives. When sy = s1 + 1 we have
(n+1—s3)+1=mn+1-s1; we are assuming (n + 1 — s1,0) € A hence
1(0,v,n+1—s51) =s1 and (s2,n+ 1 — s2) € A hence I(n + 1 — s2,52) = 51
and we conclude 2s1 + 1 = s9, then s1 +1 = 251 + 1 and s; = 0 which is
impossible.

Finally, consider sy—1 since sy # $1+1 we have sa—1 # n+1—s; (notice
n+l—s1 = s1);(s2—1 € W, (s2—1,n+1,0)), (s2a—1 & B, (sa—1, s9,n+1—53))
(notice (n+1—s9,52 — 1) € A because l[(n+ 1 — s2,52) = s1). Hence so — 1
is red and then (sy — 1, 2,0) is an h.c. triangle.

Subcase 4.c. 81 + $9 = n.
First assume s; # 2.

Let k € (n + 1,7,0) such that I(k,~,0) = s1, notice (0,k) € A. k € B:
(k € R,(k,s2,0)),(k & W,(k,n+ 1,0)) (notice (k,n + 1) € A because
s1+ s2 =n).

When s = s1+1 we consider k—1; (k—1 & B, (k—1,n+1,s9)),(k—1 &
R, (k—1,k,s2)), hence k—1 is white and then (k—1,n+1,0) is an h.c. triangle
(notice that so = s1+1 and s;+s2 = n imply {(0,k—1),(k—1,n+1)} C A).

So we will assume so # s1 + 1.
n e B:(n¢g W (0,n,n+1)),(n & R,(n,s2,0));s2—1¢€ B:i(sg—1¢& W,
(s2 —1,n+1,0) when (s2 —1,n+1) € A and (s2 — 1,n,n + 1) when
(n+1,s9—1) € A;k—1e€ B:(k—1¢ W,(k—1,n,n+ 1)) (notice that
(k—1,n) € A because s1+s2 =n), (k—1¢ R, (k—1,n,s2)).

Finally, consider k+1; (k+1 & B, (k+1, s2,n+1)) (notice (s2,n+1) € A
because s1 +sg =nand so #s1+1), (k+1 ¢ W, (k+ 1,52 —1,n+1))

(We can assume (sp —1,n+1) € A because when (n+1,s9—1) € A we
have (n+1,s2—1, s2) an h.c. triangle, and we can assume (k+1,s0—1) € A
because when (so —1,k+1) € A we have I(k+1,7,50—1) = 52,51 =2 and
sg =n —2). We conclude k + 1 is red and then (k + 1,59,k — 1) is an h.c.
triangle. ((k —1,k+ 1) € A because s; # 2).

Now assume s; = 2 (hence sy =n — 2).
neW: (ngR,(n,n—2,0)), (n&€W,(n,n+1,0)).
leB: (1¢R,(1,n—2,0)), (we can assume (1,n —2) € A because when
(n—2,1) € A we have s3 = s1+ 1, s0 =3, 1 =2and D = 811<2,3>),
(1¢W,(1,n+1,0). n+3€ B: (n+3¢ R,(n+3,1,n—2)) (We can
assume (n — 2,n + 3) € A because when (n+ 3,n — 2) € A we have sy = 5,
s1=2and D & 5)15<2, 5). And we can assume (n+3,1) € A because when
(1,n+3) € A we have sy = n—1 but we are assuming s, =n—2). 2n € W:
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(2n € R,(2n,n — 2,n+ 3)) (We can assume (n + 3,2n) € A because when
(2n,n+3) € Awehave sy =n—3=2,n=5and D = 5)11<2,3>).

Finally, consider n —4; (n —4 € R,(n — 4,n,n — 2)) (We can assume
(n —4,n) € A because when (n,n —4) € A we have, sy = 4, n = 6 and
D= 5)13<2, 4)), (n—4 ¢ W, (n—4,n+1,0)) (We can assume (n—4,n+1) € A

because otherwise we obtain so =5, 81 =2, n=7and D = 815<2, 5). And
we can assume (0,n —4) € A because in other case s =n—4=2,n=6
and D = C13(2,4). Hence n —4 is blue and then (n —4,n+1,2n) is an h.c.
triangle. (We can assume (2n,n — 4) € A because when (n —4,2n) € A we

have s =n—3,n=5and D = 5)11<2,3>).

Case 5. When 2 <s; <s9 <n—1and the vertexn+1— sy € W.
This case follows directly from Case 4 by applying Lemma 2.

Case 6. When 2 < 51 < s3 < n — 1 and there exists a vertex ¢ €
(n+1,7,0), i € W such that £(i,v,0) € {s1,s2}. Since ¢(i,7,0) = s; or
0(i,7,0) = sy we have (0,i) € A. We will assume (n + 1,7) € A because
when (i,n + 1) € A we have (i,n+ 1,0) an h.c. triangle.

Observe now that we can assume n ¢ R. Because when n is red, consid-
ering the automorphism f: V(D) — V(D) such that f(z) = x+n+1 and in-
terchanging the colors blue and red we obtain the Case 3 when £(i,7,0) = s1
and the Case 5 when ¢(i,7,0) = s2. And by Lemma 1 we obtain an h.c.
triangle.

n € B; it follows from the observation above and the fact (n € W, (n,n +
1,0)).

We will assume (n,7) € A. Because when (i,n) € A we have (i,n,n+1)
an h.c. triangle.

Now we consider two possible cases:

Subcase 6.a. s1 + s9 < n.
Since s1 + s2 < n we have {(s1,n+ 1), (i,s1)} C A.

Consider s1; we can assume s; € W because when s; € W we are in
Case 2, (s1 € R, (s1,0,1)); hence s; is blue and then (s1,n + 1,4) is an h.c.
triangle.

Subcase 6.b. Assume s1 + s9 > n + 1.
When £(i,v,0) = sy or £(i,7,1) = s2 we consider j € V(v) such that
0(j,7v,1) = s1; since s1 + 82 > n+1, (n,i) € Aand (n+ 1,7) € A we have
j€ (1,y,n—1). If j € W then we obtain some of the cases 1 to 5 and we
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are done, (j € R, (j,n,i)) (notice (i,j) € A because £(j,~,i) = s1), hence j
is blue and then (j,n + 1,4) is an h.c. triangle. So we have £(i,v,0) = s1
and £(i,7,1) # s9 (in particular s3 # s1 + 1 and (i,1) € A).
Now we will prove that we can assume (1,n) € A. When (n,1) € A we
have s = n—1 or s9 = n — 1 but since s1 < s9 < n — 1 we conclude
sy =n—1. Since s = n—1 we have (i,i+n+2) € A. When {(i+n+2,n),
(i+n+2,n+1)} C A we consider i +n +2; since i +n+2 € (0,v,n—1)
we can assume i +n + 2 ¢ W (because when i +n + 2 € W we are in some
of the cases 1 to 5 and we are done), (i+n+2 ¢ B,(i +n+2,n+ 1,i))
hence i + n 4+ 2 € R and then (i +n + 2,n,7) is an h.c. triangle. So, we
have £(i+n+2,7v,n) = sy or £(i+n+2,7,n+1) = s1; in any case we have
L(i+mn,y,n) # sy and £(i+n,v,n+1) # s1. Observe that £(i+n,vy,n) # s2
because when £(i+n,~y,n) = ss = n—1 we have i+n = n and then s; = n—1
which is impossible because s; < s3. Also observe that £(i+n,vy,n+1) # so
because when £(i+mn,7y,n+1) = so = n—1 we obtain i+n = 2 and s; = n—2
but we have s2 # s; + 1. We conclude that {(i + n,n), (i +n,n+ 1)} C A.
Now consider i + n; we can assume i +n ¢ W (see cases 1 to 5), (i +n &
R, (i+mn,n,i)) hence i+ n is blue and then (i+n,n+1,7) is an h.c. triangle.
So we will assume (1,n) € A.

Finally, consider 1; (1 ¢ W,(0,1,n+ 1)), (1 € B,(1,n + 1,7)) hence
1 € R and then (1,n,%) is an h.c. triangle.

Case7. Let2<sy<sy<n—land;n+1l+si€eEWorn+1l+sye€W.
This case follows directly from Case 6 by applying Lemma 2.

Case 8. Let 2 < s1 < sy <n — 1 and there exists j € (n+ 1,7,0) such
that j € W, and {(n +1,7),(4,0)} C A.

First we will prove that in this case we can assume (n,j) € A.
Suppose (j,n) € A; (n € B,(n,n+ 1,7)), (n &€ W,(n,n + 1,0)). Hence
n is red and ¢(n,v,j) € {s1,s2}. And now considering the automorphism
f: V(D) — V(D) such that f(t) = t+mn+1 and interchanging the colors red
and blue we obtain Case 3 or Case 5 and we are done. So we will assume
(n,j) € A.

Observe that we can assume (j,1) € A.
When (1,7) € A we have (1 ¢ R, (1,5,0)), moreover (1 & W, (1,n+ 1,0)).
Hence 1 € B and now considering the automorphism f: V(D) — V(D) such
that f(t) = t+n and interchanging the colors blue and red we obtain Case 3
or Case 5 and we are done. So we will assume (j,1) € A.
neB; (ngW,(n,n+1,0)), (n &R, (n,j,0)).
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1leR, 1¢W,(1,n+1,0)) (1¢B,(1,n+1,75)).

So when (1,n) € A we have (1,n,j) an h.c. triangle. Then we will
assume (1,n) € A. Hence sy =n — 1.
Since so =n — 1, and n # s1, n # sg we have;
{G+n=1,7),0,7+n),(G+n+17),0Jj+n+2)} € A Since {j + n,
j+n+1} CV(1,7y,n) we can assume {j +n,j+n+ 1} N W = ) because
if {j+n,j+n+1}NW # 0 then we are in some of the Cases 1 to 5
and we are done. We conclude j+n ¢ W and j+n+1¢& W. (ie,
{j+n,j+n+1} C RUB). When j+n and j+n -+ 1 have different colors
we obtain the h.c. triangle (j +n,j+n+1,7) so we can assume they have
the same color and we will analyze the two possibilities:

Subcase 8.a. {j+mn,j+n+1} CR.

In this case we can assume (j+n+1,0) € A because when (0,j+n+1) € A
we obtain (0,7 +n + 1,5) an h.c. triangle. Hence (j +n + 1,0) € A and
E(O,’Y,j +n+ 1) S {81,82}.

If (0,v,j+n+1) = s then {(0,j+n—1),(1,j+n—1)} C A and we
consider j+n—1; (j+n—1 ¢ R, (j+n—1,45,0)), (j+n—1 ¢ B, (j+n—1,4,1)),
hence j +n —1 € W and we are in some of the cases 1 to 5.

If £00,7,74+n+1) =s9 then j+n+1=n—1 (remenber sy =n — 1)
and j + n + 2 = n which is impossible because {(j,7 + n + 2),(n,j)} C A.

Subcase 8b. {j+n,j+n+1} CB.
In this case, we can assume (n+1, j+n) € A because when (j+n,n+1) € A
we have (j +n,n+1,7) an h.c. triangle.

Hence (n+1,j+n) € Aand ¢(j +n,y,n+ 1) € {s1,s2}.
When ¢(j +n,v,n+1) =s; we have {(j+n+2,n),(j+n+2,n+1)} CA
and we consider j+n+2;(j+n+2¢ R, (j+n+2,n,7)),i+n+2¢
B,(j+n+2,n+1,7));s0j+n+2€W and we are in some of the cases 1
to 5.

When £(j +n,v,n+ 1) = s we have j +n = 2 (remember s =n — 1)
and j +mn — 1 = 1 which is impossible because {(j + n —1,7), (4,1) C A.

Case 9. sy =1and 1 € W (remember we are assuming n+ 1 € R, and
0 € B).

Subcase 9.a. sy = n.
In this case (0,n + 1,1) is an h.c. triangle.

Subcase 9.b. s9 =n — 1.
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In this case we will assume sy # 2 because when so = 2 we obtain n —1 = 2
and D = 67(1,2).

2n € B; (2n € R, (2n,1,0)) (notice (2n,1) € A because sy # 2), (2n & W,
(0,2n,n + 1)) (notice (2n,n + 1) € A because sy =n — 1).

ne€R, (ngW, (n2nn+1)), (n¢& B, (n,1,n+1)). Hence (1,0,n) is an
h.c. triangle.

Subcase 9.c. s9 = 2.
In this case we will assume n > 5 because when n = 2, D = 6>5<1,2>7

when n =3, D = 67(1,2> and when n =4, D = 69(1,2>. Hence we have
ln+1,7,2n—1)>3,2n—1# 3, and ¢(3,y,n+ 1) > 3.
2n—1eW;2n—-1¢R,(1,0,2n—1)),2n—-1¢ B,(n+1,2n — 1,1)).

Consider 3; (3 ¢ R, (3,1,0)),(3 € W, (3,n + 1,0)), hence 3 is blue and
then (3,n+1,2n — 1) is an h.c. triangle.

Subcase 9.d. sy € {2,n—1,n}.
Let j € (n+ 1,7,0) be such that £(j,v,0) = sa. We will consider two
possibilities:

Let (n+1,7) € A.
Since s2 ¢ {n —1,n} we have {(1,n+1),(j,1)} C A.
j e W;(j € R,(1,0,5), ¢ B,(j,1,n+1)). Now consider 2; (2 € R,
(2,1,0)), (2 € B, (2,n+ 1,7)), hence 2 is white and (2,n + 1,0) is an
h.c. triangle.

And let (j,n+1) € A.
In this case we have j =n+ 1 —s9, 2s9 =n and (n+ 1 — s9,1) € A.
jE€B;(j¢R,(,1,0),(H €W, (j,n+1,0)), consider n+1—s9; (n+1—3s9 &
W, (i,j,n+1—s2)) (remember s9 # n), (n+1—s2 & B, (n+1—s92,1,n+1));
hence n 4+ 1 — s9 is read and then (n + 1 — s2,1,0) is an h.c. triangle.

Case10. sy =1andneW.
This case follows directly from Case 9 by applying Lemma 2.

Case1l. sy =1and s € W.

Observe that when s, = n we obtain (n,0,n 4+ 1) an h.c. triangle.

And when sy = n — 1 we can assume sy # 2 (because s3 =2 =n—1
implies D = (C7(1,2)); consider n; we can assume n ¢ W (because when
n € W we are in Case 10), (n € R, (n,n—1,0)), hence n € B and (n,n — 1,
n+ 1) is an h.c. triangle.

So we will assume 2 < s9 < n — 2 and consider two cases:
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Subcase 11.a. s1=1,50€ W,2<sy<n-—2and (sg,n+1) € A.
2n € W;(2n € R, (2n,s2,0)), (2n &€ B, (2n, s2,n+1)) (notice (n+1,2n) € A
because s9 <n — 2.
so+1eW;(sa+1¢& R, (s2+1,52,0), (s2+1¢ B,(s2+1,n+1,2n)) when
(so+1,n+1)€ Aand (sg+ 1,s2,n+ 1) when (n+ 1,50+ 1) € A).
We will assume (n + 1,59 + 1) € A because when (s2 +1,n+ 1) € A we
have (s2 + 1,n + 1,0) an h.c. triangle. And since s; + 1 # n we have
l(sy+1,v,n+ 1) = s9, and 2s9 = n.

Finally, consider j € (n + 1,7,0) such that £(j,7,0) = so;(j & W,
(7,m+1,0)),(j &€ B, (j,n+ 1,52+ 1)), hence j € R and then (j, s2,0) is an
h.c. triangle.

Subcase 11.b. s1 =1,80 € W,2< sy <n—2and (n+1,s2) € A. Since
s9 # n we have that £(s2,v,n+ 1) = s9 and 2s9 = n + 1. Notice that we

can assume sy > 2 (because when sy = 2, we have n = 3 and D = 87(1, 2))
and hence {(0,s2 —1),(s2+1,n+ 1)} C A.
so+1€B;(sa+1€R,(s2+1,82,0)),(s2+1& W, (s2+1,n+1,0)).
2n € B; (2n € R, (2n,s2,0)), 2n ¢ W, (2n,s2+ 1,n + 1)).

Now consider s3 — 1; (s — 1 € R, (s2 — 1,2n,52)),(s2 — 1 & W, (s9 — 1,
n+1,0)), hence ss —1 € B and (s2 — 1,n+ 1,s2) is an h.c. triangle.

Casel12. sy=1landn+1—s9cW.
This case follows directly from Case 11 by applying Lemma 2.

Case 13. s1 = 1 and there exists i € (2,v,n — 1), ¢ € W such that
{(0,4), (i,n+1)} C A(D).

When sy # n we have (0,7,n 4+ 1) an h.c. triangle so we will assume
S9 = N.

First notice that we can assume n > 6 (Because; when n = 2 we have
D= C5(1,2); when n =3, D= C+(1,3); when n = 4, D = C¢(1,4); and
when n =5, D = 6)11<1,5>.

First we will analyze the case i = 2; in this case consider n+3; n+3 € B;
n+3¢&R,(n+3,0,2)),(n+3 & W,(n+3,0,n+ 1)) and now consider
n+5Mm+5¢ R, (n+5n+3,2),(n+5¢& B,(n+5,2,n+ 1)) hence
n+5¢€ W and (n+5,0,n+1) is an h.c. triangle (notice that (n+5,0) € A
because n > 6).

Now suppose i € (3,7,n — 1).

Consider 1; 1 € R; (1 € W,(1,0,n+1)),(1 ¢ B,(1,i,n+ 1)).
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Let h € {n + 3,n + 4} be such that (i,h) € A (when i = 3 we take
h =n+ 4 and when ¢ > 3 we take h = n + 3, since s;1 = 1 and s9 = n we
have (i,h) € A and since n > 6 we have {(h,0),(h,1)} C A); and consider
h; (h & B, (h,1,1)), (h &€ R, (h,0,7)) hence h € W and (h,0,n + 1) is an
h.c. triangle.

Case14. sy =1and 2n e W.

Subcase 14.a. s1=1,2n € W and s9 = n.
In this case we can assume (as in Case 13 when sy =n) n > 6.
1€ B, (1¢R,(1,0,2n)), (1 €W, (1,0,n+1)). n+2€ B; (n+2 ¢ R,
(n+2,2n,1)), (n+2 ¢ W, (n+2,n+ 1,1)). Now consider 3; (3 ¢ W,
3, n+1,1)), (3¢ B, (3,n+1,2n)) hence 3 € R and (3,n + 2,2n) is an
h.c. triangle.

Subcase 14.b. sy =1,2n € W and s =n — 1.
In this case (0,2n,n + 1) is an h.c. triangle.

Subcase 14.c. s1=1,2n € W and sy = 2.
In this case we will assume n > 5. (Because when n = 2 when obtain
D = 65(1,2% when n =3, D = 6}7(1,2) and when n =4, D = 69(1,2».
2eW; (2 ¢ R,(20,2n)),(2 ¢ B,(2,n+1,2n)), now consider 3; (3 ¢ R,
(3,2,0)), (3 &€ B, (3,n+1,2n)) (notice that (3,n+1) € A because n+1 > 6).
Hence 3 € W and (3,n + 1,0) is and h.c. triangle.

Subcase 14.d. sy =1,2n € W and so € {2,n — 1,n}.
Consider 1; we can assume that 1 ¢ W because when 1 € W we are in
Case 9 and we are done, (1 ¢ R,(1,0,2n)). Hence 1 € B and (1,n + 1,2n)
is an h.c. triangle.

Case15. sy=1landn+2¢€W.
This Case follows directly from Case 14 by applying Lemma 2.

Case 16. sy =1, and i € (n+ 3,7,2n — 1) with £(i,7,0) = s satisfies
e W.

We can assume 1 ¢ W (see Case 9), (1 ¢ R,(1,0,4)) hence 1 € B.
Clearly in this case sy & {n,n — 1}, so {(i,1),(1,n+ 1)} C A.

When (i,n + 1) € A we have (i,n + 1,0) is an h.c. triangle and when
(n+1,7) € A we obtain (n +1,4,1) an h.c. triangle.

Case17. sy=1landn+14+s € W.
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This case follows directly from Case 16 and Lemma 2.

Case 18. s; = 1 and there exists i € (n + 1,7,0) N W such that
{(n+1,9),(:,0)} C A.

Along this case we will assume without more explanation that there is
no vertex j € (0,v,n+ 1) N W. (because when such a vertex exists we are
in some of the cases 9 to 17).

Clearly, when sy = n we have (0,n + 1,4) an h.c. triangle.

Subcase 18.a. s9 =n — 1.

We have {(i +n—1,i),(i,i +n), (i +n+1,4),(i,i + n+2)} C A.
i+n—1€B;(i+n—1¢ R, i+n—-140)). i+neB; (i+n¢R,
(i4+n,i+n—1,4)).

i+n+2€ R;(i+n+2¢ B, (i+n+2,n+1,i)). i+n+1 € R;(i+n+1¢ B,
(t+n+1,ii+n+2)).

When (0,i+n+1) € A we obtain (0,74+mn+1,4) an h.c. triangle hence
we can assume (i +n + 1,0) € A and then £(0,7v,i +n + 1) € {s1,S2}; if
i+mn+1=1we have i + n =0 and ¢ = n + 1 which is impossible (because
n+leRandie W);s0i+n+1=n—1,i=2n—1and £(i,v,0) = 2.

When (i+n,n+1) € A we obtain (i+mn,n+1,7) an h.c. triangle hence
we can assume (n + 1,9+ n) € A and then £(i + n,v,n + 1) € {s1,s2}; if
i+mn = n we have ¢ = 0 which is impossible (i € W and 0 € B); soi+n = 2,
i=n+3and {(n+1,v,i) =2.

Since £(i,7,0) = {(n+1,7,7) = 2 we conclude n =4 and D = 89(1, 3).

Subcase 18.b  Assume the hypothesis on Case 18, sy & {n,n — 1}.
Since sy € {n,n — 1} we have {(i,i + n — 1),(i,7 + n),(i + n + 1,4),
(i+n+2,4)} C A.

First suppose sy = 2; in this case: (0,i+n+2) € A and (i +n +
2¢ R,(0,i+n+2,i)) hencei+n+2¢€ B; (i+n—1,n+1) € Aand
(t+n—-1¢& B,(i+n—1,n+1,i)) hence i +n —1 € R. Also we have
(i+n—1,i4+n+2) € Aand then (i+n—1,i+n+2,i) is an h.c. triangle.

Now suppose sg # 2; in this case (i +n — 1,7+ n+ 1,7) is a triangle, so
we can assume {i +n—1,i+n+ 1} C Ror{i+n—1,i+n+1} C B.

When {i+n—1,i+n+ 1} C R we have (i +n+ 1,0) € A (because
when (0,i+n+1) € A we obtain (0,7 +n+1,4) an h.c. triangle), and since
i+n+1>1 00+n+1,7,0) = s9. It follows that (0,7 +n +2) € A,
(i+n+2¢R,(i+n+2,4,0) andi+n+2¢€ B.

Since i +n+2 € Bwehave i+n € B, (i+n ¢ R,(i+n,i+n+ 2,7)).
i+n € B implies (n +1,i+n) € A (in other case (i +n,n + 1,4) is an h.c.
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triangle), and (i + n,v,n + 1) = sy (because i # 0 and then i +n # n).
So; when sy # 3 we have (i +n — 1,94+ n + 2,i) an h.c. triangle and when

sy =3 we obtainn+1=>5and D = 89(1,3>.

When {i+n—1,i+n+1} C B we have (n+1,i+n—1) € A (otherwise
(t+n—1,n+1,7) is an h.c. triangle) and since i + n — 1 # n we obtain
l(i+n—1,7,n+1) = s3. Since i +n # n we observe that (i+n,n+1) € A
and then i +n € R; (i+n & B, (i +n,n+ 1,7)); it follows i + n + 2 € R;
(t+n+2¢ B,(i+n,i+n+2,i)), and we can assume (i +n +2,0) € A
(when (0,7 +n + 2) € A the triangle (0,7 +n + 2,4¢) is an h.c. triangle),
and then i +n + 2 = s9 (clearly i +n + 2 # 1). Finally, observe that when
So #3(i+n—1,i+n+2,i) is an h.c. triangle and when s, = 3 we obtain
n = 2 (remember i+n+2 = s9 and i+n—1 = n+1—s9) which is impossible
because sy < n.

Case 19. sy =n,s1#1 and s1 € W.

Subcase 19.a. so =n, s1 # 1, s1 € W and 2s1 < n.
Let j € (n+1,7,0) be such that £(j,7,0) = s7.

We have {(s1,n+1),(n+1,5),(0,7)} C A.
jeW; (j €R, (j,%,0)), ( ¢ B, (j,s1,n+1)). Notice s; # n — 1 because
n > 2, then we have {(2n, s1), (n+1,2n)} C A. And consider 2n; (2n & W,
(2n,0,n + 1)), (2n € B, (2n,s1,n + 1)) hence 2n € R and then (2n,0,j) is
an h.c. triangle.

Subcase 19.b. sg =n, s1 # 1, s1 € W and 2s1 = n.
In this case we will assume s; < n — 2 (because when s; = n — 1 we obtain

D= C5(1,2)).

2ne R;(2n ¢ W, (2n,0,n+ 1)), (2n &€ B, (2n,s1,n+ 1)).

leW; (1¢€R,(1,5,0),1¢B,(l,s;,n+1)). n+2€B; (n+2¢W,
(n+2,00n+1)), (n+2¢&R, (n+2,0,1)). Finally, consider j; (j ¢ W,
(7,2n,0)), ( € R, (4,1,n+2)) hence j € B and (j,2n,1) is an h.c. triangle.

Subcase 19.c. so =n, s1 # 1, s1 € W and 2s1 > n.
When 2s; =n+ 1 we have (0,n+ 1,s1) an h.c. triangle. So we will assume
2s1 > n+ 2. (notice that 2s; > n + 2 implies n + 1 — s1 € (0,7, s1))-
Consider n+1—s1;n+1—s1 € Wi (n+1—s1 € R, (n+1—s1,51,0)),
(n+1—s1¢ B, (n+1-s1,s1,n+1)). Here we consider two possibilities:
Let s =n—1.
We will assume n > 4 (because when n = 2, D = (C5(1,2) and when n = 3,
D = (C7(2,3)). Observe that in this case n +1 — s = 2.
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ne W, (né¢ R, (n02),(n & B,(n,n+ 1,2)). Consider the vertex 4;
4 ¢ W; (4 ¢ R,(4,n,0)) (when n = 4 we are done because we proved
neW), (4¢ B,(4,n+1,2)). Now consider n+3; n+3 € B; (n+ 3 ¢ R,
(n+3,0,2)),(n+3 ¢ W, (n+3,0,n+1)). We conclude that (n+3,4,n+1)
is an h.c. triangle.

And let s1 <n —2.
First we prove that (n+1—s1+1) € W. Whenn+1—s; +1 = s1 we are
done, when n+1—s1+1#s; wehave (n+1—s1+1¢ R, (n+1—5s1+
1,51,0)),(n+1—-s1+1¢B,(n+1—s1+1,n+1,n+1—s1)).

Now 1 € W; (1 € R, (1,51,0)), (1 ¢ B,(n+1,1,s1)). Finally, n+2 € B;
m+2¢ R,(n+2,0,1)),(n+2¢& W,(n+2,0,n+1)) . We conclude that
(n+2,n+1—s;+1,n+1)is an h.c. triangle.

Case20. ss=n,s1#1landn+1—s3 € W.
This case follows directly from Lemma 2 and Case 19.

Case 21.  s3 = n, s # 1 and the vertex ¢ € (n + 1,7,0) such that
0(i,7,0) = s; is white.

Subcase 21.a. 251 < n.
(s1 € R, (s1,0,17)),(s1 € B, (s1,n+1,i)) hence s; € W and we are in Case 19.

Case 21.b. 2s1 = n.
In this case we will assume s; # n — 1 (because when s; = n — 1 we obtain
D= C5(1,2)).
n+2e R, (n+2¢ B,(n+2,i,n+1)),(n+2¢& W,(n+2,0,n+ 1)).
2n € B; (2n € R, (2n,0,7)), (2n & W,(2n,0,n + 1)). s1 € B; (s1 € R,
(Slaiazn))v (Sl Q/ W (Slan+ 1,271)) 1 e B7 (1 € Ra (17]72))7 (]' ¢ W7
(1I,n+2,0)).

Hence we have (1,17 + 2,7) an h.c. triangle.

Subcase 21.c. 2s1 > n + 1.
Let s =n—1.

In this case we will assume n > 4. (Because when n =2, D = 65(1, 2)
and when n =3, D = 5)7(2, 3)).

In this case i = n+ 2 and {(0,n + 2),(2n,n + 1)} C A(D), moreover
since n > 4 we have n + 3 < 2n.
2n e W; 2n € R,(2n,0,n+2)), 2n &€ B, 2n,n+1,n+2)). n+3 € W;
n+3¢R, (n+3,0,n+2)), (n+3¢&B, (n+3,2n,n+1)). So we have
(0,n+1,n+ 3) an h.c. triangle.
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And let s1 <n —2.
n+l+s1eW;(n+1+s1¢€R (n+1+51,0,4),(n+1+s1¢B,(n+1
+s1,n+1,7)),n+2€ R; (n+2¢ B, (n+2,n+1+s1,n+1)), (n+2¢W,
(n+2,0n+1)),i+1e€W,wheni+1=n+1+s; wehavei+1ec W
and when i +1 #n+ 1+ s; we have; (i +1¢ R, (i+1,0,7)), (i+1 ¢ B,
(t+1,n+1+4+s,n+1)). 1eR (1¢B,(1,n+2,7),(1¢&W,(1,n+2,0)).
So we obtain (1,74 1,0) an h.c. triangle.

Case22. ss=mn,s1#1landn+1+s € W.
This case follows directly from Lemma 2 and Case 21.

Case 23. sy =n, s1 # 1 and there exists i € (n+1,v,0) N W such that
{(n+1,1), (5,0} € A(D).

In this case (0,n + 1,7) is an h.c. triangle.

Case 24. sy =n, s1 # 1 and there exists i € (0,v,n+ 1) N W such that
{(0,1), (i,n+ 1)} C A(D).

In this case we will assume that V(n + 1,7,0) N W = @ (because when
there exists z € V(n + 1,7,0) N W we are in some of the previous cases).

Subcase 24.a. s1 =n — 1.

In this case we will assume n > 7 (When n =2, D = 5)5<1, 2); when n = 3,
—

D= 67(2,3% whenn =4, D = 69(3,4>; when n =5, D= (C;(4,5) and

when n =6, D & 6)13(5, 6)).

Since s =n — 1 we have {(i +n — 1,4), (i,i+n+2)} C A.
i+n—1€eR; (i+n—-1¢ B,(i+n—1,i,n+ 1)) (Notice that since
s1 = n—1, the hypothesis on Case 24 imply i € (3,7,n—2)). i+n+2 € B;
(i+n+2¢R,(i+n+20,1)).

Wheni+n+3#0andn+2 #i+n—1, we have i + n + 3 € B;
(i+n+3 ¢ R, (i+n+3,i,i+n+2)). n+2 € R;(n+2 ¢ B, (n+2,i+n—1,1));
and then (n+2,i+n+ 3,i) is an h.c. triangle.

When i+n+3 = 0 we have i = n—2 and since n > 7 we also have n+2 #
i+n—1and n+3 #i+n—1. Consider n+3; (n+3 & B, (n+3,i+n—1,7))
hence n + 3 € R and (n + 3,0,4) is an h.c. triangle.

When n+2 =i+ n — 1 we have i = 3 and since n > 7 we have 2n #
i+n+2and 2n—1+#i+n—2. Consider 2n — 1; (2n — 1 € R, (2n — 1,1,
i+n+2)) hence 2n —1 € B and (2n — 1,i,n + 1) is an h.c. triangle.

Subcase 24.b. s1 <n — 2.
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Since so = n and s1 < n — 2 we have {(i,i +n —1), (¢ +n,q), (i,i + n+ 1),
(i+n+2,i)} C A.

Leti+n+2=0.

In this case we havei =n—1,i+n+1=2ne€ B; (i+n+1¢ R, (i+n+1,
i+n+2,0)),n € B; (n ¢ R, (n,0,n—1)), (n € W, (n,n+1,i+n+1)),i+n €
B, (i+n € R, (i+n,n—1,n)),i+n—1¢€ B; (i+n—1 ¢ R, (i+n—1,i4+n,1));
now notice that we can assume (i +n,n+1) € A (When (n+1,i+n) € A,
(n+1,i+ n,i) is and h.c. triangle), hence £(n + 1,7,i +n) = s; =n — 2.
Finally, consider i+n—2; we can assume i+n—2 > n+1 (when i+n—2 = n,
D= C7(1,3) and when i +n—2=n+1, D= Cg(2,4)); since s; =n — 2
and sa = n we have {(i+n—2,7),(n,i+n—2),(n+1,i+n—2)} C A; then
(t+n—2¢B,(i+n—2,i,n+1)),s0i+n—2€ Rand (i+n—2,i,n) is
an h.c. triangle.

And let i +n+2 #0.

First we prove that we can assume (n + 2,1) € A.

Suppose (i,n+2) € A; then (n+2 ¢ R,(n+2,0,i)), son+2 € B. Now
consider i +n; i +n #n+2((i,n+2) € A, and (i +n,i) € A),i +n #
n+ 1(sy = n).

When {(n+2,i+n), (n+1,i+n)} C A we have (i+n & B, (i+n,i,n+1))
hence i+n € R and (i+n,i,n+2) is an h.c. triangle, so we have (i+n,n+1)
€ Aor (i+n,n+2) € Aand then {(n+1,~,i+n) = sy or {(n+2,7v,i+n) = s1;
in any case and since i+n+2 # 0 we have {(n+2,i+n+2), (n+1,i+n+2)}
C A. Finally, consider i +n+2, (i+n+2¢ R, (i+n+2,i,n + 2)) hence
i+n+2€Band (i+n-+2,i,n+1)is an h.c. triangle.

Now we prove that we can assume (7,2n) € A.

Suppose (2n,i) € A, then (2n € B, (2n,i,n+ 1)), hence 2n € R. When
{(i+n+1,0),(i+n+1,2n)} C A (Notice that since ¢ + n + 2 # 0 we have
i+n+1<2n), wehave (i+n+1¢R,(i+n+1,0,7)) hencei+n+1¢€ B
and (i +n + 1,2n,4) is an h.c. triangle. So we have (0,7 +n+ 1) € A or
(2n,i+n+1) € A (and since i +n+1# n+1 we have {(i+n+1,7,0) = s;
or l(i+n+1,7,2n) =s1). Sowheni+n—1%n+1 we have {(i +n —
1,0),(i+n—1,2n)} C A and consider i+n—1, (i+n—1¢ R, (i+n—1,0,1))
hence i+n—1€ B and (i+n—1,2n,7) is an h.c. triangle. Now we analyze
the case wheni+n—1=n+1and (0,i+n+1) € A; in this case s =n—2
and consider i + n + 3; Since s; = n — 2 we have (i,i +n + 3) € A and
we can assume i +n + 3 < 2n (when i + n + 3 = 0 we have n = 4 and

D= 89<2,4> and when ¢ +n+3 = 2n, we have n = 5 and D = 611(3,5)),
(t+n+3¢R,(i+n+3,0,i)) hence i + n+ 3 € B and (i + n + 3,2n,1)
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is an h.c. triangle. Finally, analyze the case when i +n —1 = n 4+ 1 and
(2n,i+mn+1) € A in this case s; = n — 3 and consider ¢ + n + 4 we have
(,i+n+4) € A and we can assume i +n+4 < 2n (when i+n+4 =0 we
obtain n =5 and D = 5)11<2, 5) and when ¢ +n + 4 = 2n we obtain n =6
and D = 613(3,6»; (i+n+4¢ R, (i+n+4,0,7)) hence i+n+4 € B and
(1 +n+4,2n,4) is an h.c. triangle.
So we can assume £(2n,vy,1) = £(i,y,n + 2) = s;.
n+2€R; (n+2¢ B,(n+2,i,n+1)). 2n € B;(2n € R,(2n,0,7)).
Finally, consider 1; (1 ¢ W, (0,1,n+2)), (1 € R,(1,7,2n)) hence 1 € B
and (1,4,m 4 1) is an h.c. triangle. |

References

[1] B. Abrego, J.L. Arocha, S. Ferndndez Merchant and V. Neumann-Lara, Tight-
ness problems in the plane, Discrete Math. 194 (1999) 1-11.

[2] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight
hypergraphs, J. Graph Theory 16 (1992) 319-326.

[3] J.L. Arocha, J. Bracho and V. Neumann-Lara, Tight and untight triangulated
surfaces, J. Combin. Theory (B) 63 (1995) 185-199.

[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American
Elsevier Pub. Co., 1976).

[5] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math.
197-198 (1999) 617-632.

[6] V. Neumann-Lara and M.A. Pizafia, Externally loose k-dichromatic tourna-
ments, in preparation.

Received 25 August 1999



