ArticleOriginal scientific text

Title

A class of tight circulant tournaments

Authors 1, 1

Affiliations

  1. Instituto de Matemáticas, UNAM, Area de la Investigación Científica, Ciudad Universitaria, 04510, México, D.F., MEXICO

Abstract

A tournament is said to be tight whenever every 3-colouring of its vertices using the 3 colours, leaves at least one cyclic triangle all whose vertices have different colours. In this paper, we extend the class of known tight circulant tournaments.

Keywords

Circulant tournament, acyclic disconnection, vertex 3-colouring, 3-chromatic triangle, tight tournament

Bibliography

  1. B. Abrego, J.L. Arocha, S. Fernández Merchant and V. Neumann-Lara, Tightness problems in the plane, Discrete Math. 194 (1999) 1-11, doi: 10.1016/S0012-365X(98)00031-4.
  2. J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405.
  3. J.L. Arocha, J. Bracho and V. Neumann-Lara, Tight and untight triangulated surfaces, J. Combin. Theory (B) 63 (1995) 185-199, doi: 10.1006/jctb.1995.1015.
  4. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Pub. Co., 1976).
  5. V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197-198 (1999) 617-632.
  6. V. Neumann-Lara and M.A. Pizana, Externally loose k-dichromatic tournaments, in preparation.
Pages:
109-128
Main language of publication
English
Received
1999-08-25
Published
2000
Exact and natural sciences