ArticleOriginal scientific text
Title
Long induced paths in 3-connected planar graphs
Authors 1, 1
Affiliations
- Instituto de Matemáticas, UNAM, Ciudad Universitaria, Area de la Investigación Científica, Circuito Exterior, México, D.F. 04510
Abstract
It is shown that every 3-connected planar graph with a large number of vertices has a long induced path.
Keywords
induced paths, 3-connected planar graphs
Bibliography
- P. Alles and S. Poljak, Long induced paths and cycles in Kneser graphs, Graphs Combin. 5 (1989) 303-306, doi: 10.1007/BF01788684.
- G. Bacsó and Z. Tuza, A Characterization of Graphs Without Long Induced Paths, J. Graph Theory 14 (1990) 455-464, doi: 10.1002/jgt.3190140409.
- F. Buckley and F. Harary, On longest induced path in graphs, Chinese Quart. J. Math. 3 (1988) 61-65.
- J. Dong, Some results on graphs without long induced paths, J. Graph Theory 22 (1996) 23-28, doi: 10.1002/(SICI)1097-0118(199605)22:1<23::AID-JGT4>3.0.CO;2-N
- P. Erdős, M. Saks and V. Sós, Maximum Induced Trees in Graphs, J. Combin. Theory (B) 41 (1986) 61-79, doi: 10.1016/0095-8956(86)90028-6.
- A. Frieze and B. Jackson, Large holes in sparse random graphs, Combinatorica 7 (1987) 265-274, doi: 10.1007/BF02579303.
- S. Suen, On large induced trees and long induced paths in sparse random graphs, J. Combin. Theory (B) 56 (1992) 250-262, doi: 10.1016/0095-8956(92)90021-O.