PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Discussiones Mathematicae Graph Theory

2000 | 20 | 1 | 81-91
Tytuł artykułu

### About uniquely colorable mixed hypertrees

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mixed hypergraph is a triple 𝓗 = (X,𝓒,𝓓) where X is the vertex set and each of 𝓒, 𝓓 is a family of subsets of X, the 𝓒-edges and 𝓓-edges, respectively. A k-coloring of 𝓗 is a mapping c: X → [k] such that each 𝓒-edge has two vertices with the same color and each 𝓓-edge has two vertices with distinct colors. 𝓗 = (X,𝓒,𝓓) is called a mixed hypertree if there exists a tree T = (X,𝓔) such that every 𝓓-edge and every 𝓒-edge induces a subtree of T. A mixed hypergraph 𝓗 is called uniquely colorable if it has precisely one coloring apart from permutations of colors. We give the characterization of uniquely colorable mixed hypertrees.
Słowa kluczowe
EN
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
81-91
Opis fizyczny
Daty
wydano
2000
otrzymano
1999-04-16
poprawiono
2000-03-24
Twórcy
autor
• Department of Mathematical Cybernetics, Moldova State University, Mateevici 60, Chisinau, MD-2009, Moldova
autor
• Institute of Mathematics and Informatics, Moldovan Academy of Sciences, Academiei, 5, Chisinau, MD-2028, Moldova
Bibliografia
• [1] C. Berge, Hypergraphs: combinatorics of finite sets (North Holland, 1989).
• [2] C. Berge, Graphs and Hypergraphs (North Holland, 1973).
• [3] K. Diao, P. Zhao and H. Zhou, About the upper chromatic number of a co-hypergraph, submitted.
• [4] Zs. Tuza and V. Voloshin, Uncolorable mixed hypergraphs, Discrete Appl. Math. 99 (2000) 209-227, doi: 10.1016/S0166-218X(99)00134-1.
• [5] Zs. Tuza, V. Voloshin and H. Zhou, Uniquely colorable mixed hypergraphs, submitted.
• [6] V. Voloshin, The mixed hypergraphs, Computer Science J. Moldova, 1 (1993) 45-52.
• [7] V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Combin. 11 (1995) 25-45.
• [8] V. Voloshin and H. Zhou, Pseudo-chordal mixed hypergraphs, Discrete Math. 202 (1999) 239-248, doi: 10.1016/S0012-365X(98)00295-7.
Typ dokumentu
Bibliografia
Identyfikatory