PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 19 | 2 | 241-248
Tytuł artykułu

On cyclically embeddable graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An embedding of a simple graph G into its complement G̅ is a permutation σ on V(G) such that if an edge xy belongs to E(G), then σ(x)σ(y) does not belong to E(G). In this note we consider some families of embeddable graphs such that the corresponding permutation is cyclic.
Wydawca
Rocznik
Tom
19
Numer
2
Strony
241-248
Opis fizyczny
Daty
wydano
1999
otrzymano
1999-02-22
poprawiono
1999-10-27
Twórcy
  • Faculty of Applied Mathematics AGH, Department of Discrete Mathematics, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
  • [2] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory 25 (B) (1978) 105-124.
  • [3] D. Burns and S. Schuster, Every (p,p-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308.
  • [4] D. Burns and S. Schuster, Embedding (n,n-1) graphs in their complements, Israel J. Math. 30 (1978) 313-320, doi: 10.1007/BF02761996.
  • [5] R.J. Faudree, C.C. Rousseau, R.H. Schelp and S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31:106 (1981) 53-62.
  • [6] T. Gangopadhyay, Packing graphs in their complements, Discrete Math. 186 (1998) 117-124, doi: 10.1016/S0012-365X(97)00186-6.
  • [7] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977) 133-142.
  • [8] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory 25 (B) (1978) 295-302.
  • [9] S. Schuster, Fixed-point-free embeddings of graphs in their complements, Internat. J. Math. & Math. Sci. 1 (1978) 335-338, doi: 10.1155/S0161171278000356.
  • [10] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241, doi: 10.1016/0166-218X(94)90112-0.
  • [11] M. Woźniak, Packing three trees, Discrete Math. 150 (1996) 393-402, doi: 10.1016/0012-365X(95)00204-A.
  • [12] M. Woźniak, Packing of Graphs, Dissertationes Mathematicae 362 (1997) pp.78.
  • [13] H.P. Yap, Some Topics in Graph Theory (London Mathematical Society, Lectures Notes Series 108, Cambridge University Press, Cambridge 1986).
  • [14] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1099
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.