EN
So far, the smallest complete bipartite graph which was known to have a cyclic decomposition into cubes $Q_d$ of a given dimension d was $K_{d2^{d-1}, d2^{d-2}}$. We improve this result and show that also $K_{d2^{d-2}, d2^{d-2}}$ allows a cyclic decomposition into $Q_d$. We also present a cyclic factorization of $K_{8,8}$ into Q₄.