ArticleOriginal scientific text

Title

Generalized ramsey theory and decomposable properties of graphs

Authors 1, 2, 3, 4

Affiliations

  1. Department of Computer Science, City College, C.U.N.Y. New York, NY 10031, U.S.A.
  2. University of Louisville, Louisville, KY 40292, U.S.A.
  3. Mathematical Institute, Slovak Academy of Sciences, Gresákova 6, 040 01 Košice, Slovak Republic
  4. Department of Geometry and Algebra, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovak Republic

Abstract

In this paper we translate Ramsey-type problems into the language of decomposable hereditary properties of graphs. We prove a distributive law for reducible and decomposable properties of graphs. Using it we establish some values of graph theoretical invariants of decomposable properties and show their correspondence to generalized Ramsey numbers.

Keywords

hereditary properties, additivity, reducibility, decomposability, Ramsey number, graph invariants

Bibliography

  1. M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
  2. M. Borowiecki and M. Hałuszczak, Decompositions of some classes of graphs (manuscript) 1998.
  3. S.A. Burr, A ramsey-theoretic result involving chromatic numbers, J. Graph Theory 4 (1980) 241-242, doi: 10.1002/jgt.3190040212.
  4. S.A. Burr and M.S. Jacobson, Arrow relations involving partition parameters of graphs (manuscript) 1982.
  5. S.A. Burr and M.S. Jacobson, On inequalities involving vertex-partition parameters of graphs, Congressus Numerantium 70 (1990) 159-170.
  6. R.L. Graham, M. Grötschel and L. Lovász, Handbook of combinatorics (Elsevier Science B.V., Amsterdam, 1995).
  7. T.R. Jensen and B. Toft, Graph colouring problems (Wiley-Interscience Publications, New York, 1995).
  8. T. Kövari, V.T. Sós and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1969) 50-57.
  9. J. Kratochvíl, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discuss. Math. Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040.
  10. R. Lick and A.T. White, k-degenerate graphs, Canad. J. Math. 22 (1970) 1082-1096; MR42#1715.
  11. L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar 1 (1966) 237-238; MR34#2442.
  12. P. Mihók, On graphs critical with respect to vertex partition numbers, Discrete Math. 37 (1981) 123-126, doi: 10.1016/0012-365X(81)90146-1.
  13. P. Mihók and G. Semanišin, On the chromatic number of reducible hereditary properties (submitted).
  14. M. Simonovits, Extremal graph theory, in: L.W. Beineke and R.J. Wilson, eds., Selected topics in graph theory vol. 2 (Academic Press, London, 1983) 161-200.
Pages:
199-217
Main language of publication
English
Received
1999-02-02
Accepted
1999-09-08
Published
1999
Exact and natural sciences