ArticleOriginal scientific text
Title
The sum number of d-partite complete hypergraphs
Authors 1
Affiliations
- Institute of Mathematics, Medical University of Lübeck, Wallstraße 40, 23560 Lübeck, Germany
Abstract
A d-uniform hypergraph is a sum hypergraph iff there is a finite S ⊆ IN⁺ such that is isomorphic to the hypergraph , where V = S and . For an arbitrary d-uniform hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices such that is a sum hypergraph. In this paper, we prove , where denotes the d-partite complete hypergraph; this generalizes the corresponding result of Hartsfield and Smyth [8] for complete bipartite graphs.
Keywords
sum number, sum hypergraphs, d-partite complete hypergraph
Bibliography
- C. Berge, Hypergraphs, (North Holland, Amsterdam-New York-Oxford-Tokyo, 1989).
- D. Bergstrand, F. Harary, K. Hodges. G. Jennings, L. Kuklinski and J. Wiener, The Sum Number of a Complete Graph, Bull. Malaysian Math. Soc. (Second Series) 12 (1989) 25-28.
- Z. Chen, Harary's conjectures on integral sum graphs, Discrete Math. 160 (1996) 241-244, doi: 10.1016/0012-365X(95)00163-Q.
- Z. Chen, Integral sum graphs from identification, Discrete Math. 181 (1998) 77-90, doi: 10.1016/S0012-365X(97)00046-0.
- M.N. Ellingham, Sum graphs from trees, Ars Comb. 35 (1993) 335-349.
- F. Harary, Sum Graphs and Difference Graphs, Congressus Numerantium 72 (1990) 101-108.
- F. Harary, Sum Graphs over all the integers, Discrete Math. 124 (1994) 99-105, doi: 10.1016/0012-365X(92)00054-U.
- N. Hartsfield and W.F. Smyth, The Sum Number of Complete Bipartite Graphs, in: R. Rees, ed., Graphs and Matrices (Marcel Dekker, New York, 1992) 205-211.
- M. Miller, J. Ryan, Slamin, Integral sum numbers of
and , 1997 (to appear). - A. Sharary, Integral sum graphs from complete graphs, cycles and wheels, Arab. Gulf J. Sci. Res. 14 (1) (1996) 1-14.
- A. Sharary, Integral sum graphs from caterpillars, 1996 (to appear).
- M. Sonntag and H.-M. Teichert, The sum number of hypertrees, 1997 (to appear).
- M. Sonntag and H.-M. Teichert, On the sum number and integral sum number of hypertrees and complete hypergraphs, Proc. 3rd Kraków Conf. on Graph Theory, 1997 (to appear).