Discussiones Mathematicae Graph Theory 19 (1999) 71–78

UNIQUELY PARTITIONABLE PLANAR GRAPHS WITH RESPECT TO PROPERTIES HAVING A FORBIDDEN TREE

Jozef Bucko

Department of Mathematics, Technical University Hlavná 6, 040 01 Košice, Slovak Republic

e-mail: bucko@ccsun.tuke.sk

AND

JAROSLAV IVANČO

Department of Geometry and Algebra P.J. Šafárik University, Jesenná 5 041 54 Košice, Slovak Republic

e-mail: ivanco@duro.upjs.sk

Abstract

Let \mathcal{P}_1 , \mathcal{P}_2 be graph properties. A vertex $(\mathcal{P}_1, \mathcal{P}_2)$ -partition of a graph G is a partition $\{V_1, V_2\}$ of V(G) such that for i = 1, 2 the induced subgraph $G[V_i]$ has the property \mathcal{P}_i . A property $\mathcal{R} = \mathcal{P}_1 \circ \mathcal{P}_2$ is defined to be the set of all graphs having a vertex $(\mathcal{P}_1, \mathcal{P}_2)$ -partition. A graph $G \in \mathcal{P}_1 \circ \mathcal{P}_2$ is said to be uniquely $(\mathcal{P}_1, \mathcal{P}_2)$ -partitionable if G has exactly one vertex $(\mathcal{P}_1, \mathcal{P}_2)$ -partition. In this note, we show the existence of uniquely partitionable planar graphs with respect to hereditary additive properties having a forbidden tree.

Keywords: uniquely partitionable planar graphs, forbidden graphs.

1991 Mathematics Subject Classification: 05C15, 05C70.

1. INTRODUCTION

Let us denote by \mathcal{I} the class of all finite undirected graphs without loops and multiple edges. If \mathcal{P} is a proper isomorphism closed subclass of \mathcal{I} , then \mathcal{P} will also denote the property that a graph is a member of the set \mathcal{P} . We shall use the terms *set of graphs* and *property of graphs* interchangeably. A property \mathcal{P} is said to be *hereditary* if, whenever $G \in \mathcal{P}$ and H is a subgraph of G, then also $H \in \mathcal{P}$. A property \mathcal{P} is called *additive* if for each graph Gall of whose components have the property \mathcal{P} it follows that $G \in \mathcal{P}$, too.

For every hereditary property \mathcal{P} there is a nonnegative integer $c(\mathcal{P})$ such that $K_{c(\mathcal{P})+1} \in \mathcal{P}$ but $K_{c(\mathcal{P})+2} \notin \mathcal{P}$ called the *completeness* of \mathcal{P} . For example $c(\mathcal{O}) = 0$, $c(\mathcal{D}_1) = 1$, $c(\mathcal{T}_2) = 2$, $c(\mathcal{T}_3) = 3$, where \mathcal{O} is the class of all totally disconnected graphs, \mathcal{D}_1 is the class of acyclic graphs, \mathcal{T}_2 is the class of outerplanar graphs and \mathcal{T}_3 is the class of planar graphs.

Any hereditary property \mathcal{P} is uniquely determined by the set

 $\boldsymbol{F}(\mathcal{P}) = \{ G \in \mathcal{I} | G \notin \mathcal{P}, \text{ but each proper subgraph } H \text{ of } G \text{ belongs to } \mathcal{P} \}$

of its minimal forbidden subgraphs.

Let $\mathcal{P}_1, \mathcal{P}_2$ be arbitrary hereditary properties of graphs. A vertex $(\mathcal{P}_1, \mathcal{P}_2)$ -partition of a graph G is a partition $\{V_1, V_2\}$ of V(G) such that for i = 1, 2 the induced subgraph $G[V_i]$ has the property \mathcal{P}_i .

A property $\mathcal{R} = \mathcal{P}_1 \circ \mathcal{P}_2$ is defined to be the set of all graphs having a vertex $(\mathcal{P}_1, \mathcal{P}_2)$ -partition. It is easy to see that if $\mathcal{P}_1, \mathcal{P}_2$ are additive and hereditary, then $\mathcal{R} = \mathcal{P}_1 \circ \mathcal{P}_2$ is additive and hereditary, too.

A graph $G \in \mathcal{P}_1 \circ \mathcal{P}_2$ is said to be uniquely $(\mathcal{P}_1, \mathcal{P}_2)$ -partitionable if G has exactly one (unordered) vertex $(\mathcal{P}_1, \mathcal{P}_2)$ -partition. For the concept of uniquely partitionable graphs we refer the reader to [1]. Basic properties of uniquely partitionable graphs are discussed in [1] and [4].

Proposition 1 [1]. Let \mathcal{P} be an additive hereditary property. Then there exists a uniquely $(\mathcal{O}, \mathcal{P})$ -partitionable graph G if and only if $\mathcal{P} \neq \mathcal{O} \circ \mathcal{Q}$.

The proof used non-planar graphs. The constructions of uniquely $(\mathcal{O}, \mathcal{P})$ -partitionable outerplanar and planar graphs were presented in [2]. The following results have been proved:

Proposition 2 [2]. Let \mathcal{P} be an additive hereditary property of completeness 1. Then there exists a uniquely $(\mathcal{O}, \mathcal{P})$ -partitionable outerplanar graph G if and only if there is a tree T which is forbidden for \mathcal{P} .

Proposition 3 [2]. Let \mathcal{P} be an additive hereditary property of completeness 1. Then there exists a uniquely $(\mathcal{O}, \mathcal{P})$ -partitionable planar graph G if and only if either some odd cycle C_{2q+1} has property \mathcal{P} or there is a bipartite planar graph H which is forbidden for \mathcal{P} . Our first result shows that the restriction on the completeness is not necessary for the existence of uniquely $(\mathcal{O}, \mathcal{P})$ -partitionable planar graphs.

Theorem 1. Let \mathcal{P} be an additive hereditary property. If there is a tree $T \in \mathbf{F}(\mathcal{P})$, then there exists a uniquely $(\mathcal{O}, \mathcal{P})$ -partitionable planar graph.

Furthermore, let us consider $(\mathcal{D}_1, \mathcal{D}_1)$ -partitions of planar graphs. The following result is presented in [3]:

Proposition 4 [3]. There are no uniquely $(\mathcal{D}_1, \mathcal{D}_1)$ -partitionable planar graph.

In this note, we shall show that the property $\mathcal{D}_1 \circ \mathcal{D}_1$ is in some sence "a minimal property" having no uniquely partitionable planar graphs. More precisely, we will prove the following result:

Theorem 2. Let \mathcal{P} , \mathcal{Q} be the additive hereditary properties of graphs with completeness 1. If there is a tree $T \in \mathbf{F}(\mathcal{P})$, then there exists a uniquely $(\mathcal{P}, \mathcal{Q})$ -partitionable planar graph.

2. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. Let T be a forbidden tree for a property \mathcal{P} . As every connected bipartite planar graph is uniquely $(\mathcal{O}, \mathcal{O})$ -partitionable, we can assume that T has at least 3 vertices. Then T contains a path wuv_1 , where v_1 is an end vertex of T. Denote by T' the graph which we obtain from T by adding the edge wv_1 . T' is outerplanar and so the join $K_1 + T'$ is a planar graph. Let G(T, 1) be the graph which we obtain from $K_1 + T'$ by deleting the edge av_1 , where a denotes the vertex of K_1 . Evidently, G(T, 1)may be embedded on the plane such that the vertices a and v_1 lie in the exterior face (see Figure 1).

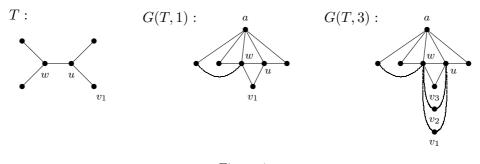
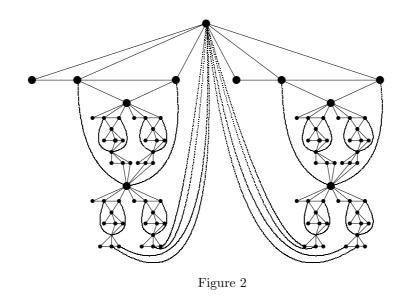


Figure 1

G(T, k), for k > 1, is a planar graph which we obtain from G(T, 1) by adding the vertices v_2, v_3, \ldots, v_k and edges $uv_2, uv_3, \ldots, uv_k, wv_2, wv_3, \ldots, wv_k$. The vertex a is called the *root* of G(T, k) and vertices v_1, v_2, \ldots, v_k , are called *leaves* of G(T, k). Moreover, for every leaf v_i we define its successor $s(v_i)$ by $s(v_1) = a$ and $s(v_i) = v_{i-1}$, if $i = 2, 3, \ldots, k$. Obviously, G(T, k) may be embedded on the plane such that both vertices v_i and $s(v_i)$ lie in a common face (see Figure 1).

Now we construct a planar graph H(T, k, d) using the induction on d. H(T, k, 1) is a graph which we obtain from k copies of G(T, k) by identifying their roots. The vertex arisen by the identification is called the *root* of H(T, k, 1). The *leaves* of copies of G(T, k) are leaves of H(T, k, 1). Similary, the successor of a leaf in H(T, k, 1) is equal to the successor of this leaf in the corresponding copy of G(T, k). For d > 1, H(T, k, d) is a planar graph which we obtain from H(T, k, 1) and k^2 copies of H(T, k, d-1) by identifying each leaf of H(T, k, 1) with the root of a copy of H(T, k, d-1). Evidently, a copy of H(T, k, d-1) can be inserted into a face of H(T, k, 1) which contains a corresponding leaf x of H(T, k, 1) and its successor $s_1(x)$ in H(T, k, 1) (see Figure 2).





The root of H(T, k, d) is the root of H(T, k, 1) and the leaves of H(T, k, d) are leaves of copies of H(T, k, d-1). Denote by $s_d(y)$ and $s_{d-1}(y)$ the successor of a leaf y in H(T, k, d) and in a corresponding copy of H(T, k, d-1). Then

$$s_d(y) = \begin{cases} s_1(x), & \text{if } s_{d-1}(y) \text{ was identified with } x, \\ s_{d-1}(y), & \text{otherwise.} \end{cases}$$

Finaly, $H^*(T, k, d)$ is a planar graph which we obtain from H(T, k, d) such that we connect each leaf of H(T, k, d) with its successor by a copy of G(T, 1) identifying the leaf with the root of G(T, 1) and the successor with the leaf of G(T, 1) (see Figure 2).

Put $V_1 = \{x \in V(H^*(T, k, d)) | d(r, x) \equiv 0 \pmod{2}\}$, where r denotes the root of H(T, k, d) and d(y, z) is the length of the shortest path between y and z in H(T, k, d). The vertices belonging to V_1 are depicted by white in Figure 2. It is easy to see that V_1 is an independent set of $H^*(T, k, d)$. Moreover, the set $V_2 = V(H^*(T, k, d)) - V_1$ induces a subgraph of $H^*(T, k, d)$ each of whose components is isomorphic to $T - v_1$. So, $\{V_1, V_2\}$ is a vertex $(\mathcal{O}, \mathcal{P})$ -partition of $H^*(T, k, d)$.

Suppose that $\{U_1, U_2\}$ is a vertex $(\mathcal{O}, \mathcal{P})$ -partition of $H^*(T, k, d)$. Consider two cases:

Case 1. $U_1 \cap V_1 \neq \emptyset$. Let $x \in U_1 \cap V_1$ and let y be any vertex of $V_1 - \{x\}$. From the construction of $H^*(T, k, d)$ it can easily be seen that there exists a sequence $x = x_1, x_2, \ldots, x_t = y$ satisfying: For every $i = 1, \ldots, t-1$, there is a subgraph G_i of $H^*(T, k, d)$ isomorphic to G(T, k) (or G(T, 1)), where x_i is its root and x_{i+1} is its leaf. As x_1 belongs to U_1 , all vertices of G_1 adjacent to x_1 belong to U_2 . However, these neighbours of x_1 together with x_2 induce a subgraph of G_1 containing T. Therefore, $x_2 \in U_1$, and by induction, $y \in U_1$. Since y is any vertex of $V_1 - \{x\}, V_1 \subseteq U_1$. The set V_1 is a domination set of $H^*(T, k, d)$, and so, $V_1 = U_1$, i.e., $\{U_1, U_2\} = \{V_1, V_2\}$.

Case 2. $V_1 \subseteq U_2$. It is easy to see that every block of H(T, k, d) is a copy of G(T, k), where the root and leaves of the copy belong to V_1 . As the vertices of a block corresponding to u and w are adjacent, at least one of them belongs to U_2 . Thus, vertices of a block belonging to U_2 induce a graph containing a star $K_{1,k+1}$. From the construction of H(T, k, d) one can see that vertices of H(T, k, d) belonging to U_2 induce a graph containing a complete k-ary tree with 2d+1 levels. Therefore, for $k \ge \Delta(T)$ and $d \ge \frac{1}{2}rad(T)$, $H^*(T, k, d)[U_2]$ contains a subgraph isomorphic to T, a contradiction. Thus, for $k \ge \Delta(T)$ and $d \ge \frac{1}{2}rad(T)$, the graph $H^*(T, k, d)$ is uniquely $(\mathcal{O}, \mathcal{P})$ -partitionable.

Proof of Theorem 2. To construct the planar graph $H_r(s)$, for $r \ge 1$, $s \ge 2$ we will use the induction on r. The first step is the construction of planar graph $H_1(s)$:

 $H_1(s) = K_2 + \bigcup_{i=1}^s K_2$, where $V(K_2) = \{x_1, x_2\}$ and $V(\bigcup_{i=1}^s K_2) = \{y_{1i}, y_{2i} \mid i = 1, 2, \ldots, s\}$. The edge $x_1 x_2$ of $H_1(s)$ we will call the "major" edge of $H_1(s)$ and edges $y_{1i} y_{2i}$, $i = 1, 2, \ldots, s$ we will call "minor" edges of $H_1(s)$. For the construction of $H_1(3)$ see Figure 3.

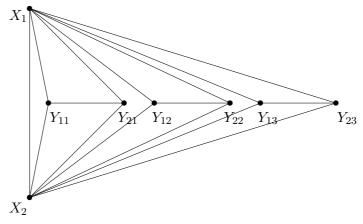


Figure 3. The graph $H_1(3)$

Let us construct the graph $H_{k+1}(s)$ in the following way:

We insert s copies of graph $H_k(s)$ to graph $H_1(s)$ such that we identify the "major" edges of copies of graphs $H_k(s)$ with "minor" edges of $H_1(s)$. For the construction of $H_2(3)$ see Figure 4.

It is easy to see from the construction, that $H_r(s)$ is a planar graph. Now we shall show, that if the maximum degree $\Delta(T)$ of the tree $T \in \mathbf{F}(\mathcal{P})$ is $\Delta(T) \leq s$ and radius rad(T) of the tree T is $rad(T) \leq r$, then the planar graph $H_r(s)$ is uniquely $(\mathcal{P}, \mathcal{Q})$ -partitionable.

Let us distinguish two "possible" vertex partitions of the graph $H_r(s)$: 1. The end vertices x_1, x_2 of "major" edge of $H_1(s)$ belong to different classes of the vertex partition. From the fact that K_3 is forbidden for both properties \mathcal{P}, \mathcal{Q} , it follows that vertices of "minor" edges of $H_1(s)$ belong to different classes of the vertex partition, too. By induction on r in both classes of the partition, it grove the complete s-ary tree with 1 + r levels, which is, for $r \geq rad(T)$ and $s \geq \Delta(T)$, a supergraph of the forbidden tree T. It means, that it is not a $(\mathcal{P}, \mathcal{Q})$ -partition of $H_r(s)$.

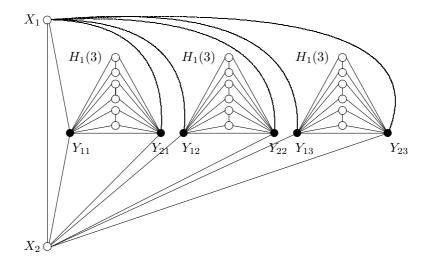


Figure 4. The graph $H_2(3)$

2. Hence the end vertices x_1, x_2 of "major" edge of the graph $H_1(s)$ have to belong to the same class of a vertex partition. From the fact that K_3 is forbidden for both properties \mathcal{P}, \mathcal{Q} , it follows, that vertices of "minor" edges of $H_1(s)$ have both to belong to the second class of the vertex partition. From the construction of $H_r(s)$ and from the fact that K_3 is forbidden it is easy to see that the partition of $H_r(s)$ is a $(\mathcal{P}, \mathcal{Q})$ -partition of $H_r(s)$. Thus $H_r(s)$, for $r \geq rad(T)$ and $s \geq \Delta(T)$ is a uniquely $(\mathcal{P}, \mathcal{Q})$ -partitionable graph.

References

- J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discuss. Math. Graph Theory 17 (1997) 103–114.
- [2] J. Bucko, P. Mihók and M. Voigt, Uniquely partitionable planar graphs, Discrete Math. 191 (1998) 149–158.
- [3] M. Borowiecki, J. Bucko, P. Mihók, Z. Tuza and M. Voigt, *Remarks on the existence of uniquely partitionable planar graphs*, 13. Workshop on Discrete Optimization, Burg, abstract, 1998.
- [4] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985) 49–58.

Received 14 July 1998 Revised 24 November 1998